Immigrants, Legal Status, and Illegal Trade

Brett A. McCully*
Collegio Carlo Alberto
September 2022

Abstract

Nearly $2 trillion of illegally trafficked goods flow across international borders every year, generating violence and other social costs along the way. In this paper, I use novel microdata on the universe of large illegal drug confiscations in Spain to provide the first causal estimates of how immigrants and immigration policy affect drug trafficking. I find that doubling the number of immigrants from an origin country raises the likelihood of illegal drug imports from that country by 8 percentage points. Migrants’ social networks and past exposure to trafficking drive the results. Granting legal status to immigrants reduces illegal drug imports.

Keywords: drug trafficking, social networks, immigration policy.

JEL Codes: K42, J15, F14, F22.

---

*brett.mccully@carloalberto.org. I am extremely grateful to Jonathan Vogel, Pablo Fajgelbaum, Felipe Goncalves, Randall Kuhn, Adriana Lleras-Muney, and Emily Weisburst for advice and encouragement. I thank Treb Allen, Ashna Arora, Wookun Kim, Brian Kovak, Giovanni Mastrobuoni, Melanie Morten, and Vidhya Soundararajan for helpful discussions, and participants at the Virtual Crime Economics Seminar (ViCE), European Winter Meetings of the Econometric Society, the NBER Summer Institute for International Trade and Investment, European Trade Study Group, Italian Society of Economics Annual Meeting, the Southern Economic Association Annual Meeting, DemSemX Virtual Conference, the Online Crime Economics Graduate Student Seminar, APPAM Fall Research Conference, Empirical Investigations in International Trade conference, Networks Conference at INET, the Population Association of America, Economic Graduate Student Conference, and seminar participants at Collegio Carlo Alberto, Bocconi University, UCLA, George Washington University, the OCC, CFPB, and USITC. I owe special thanks to Ariadna Jou for assistance with contacting the Spanish government, and to Remi Boivin for help with the UNODC data. I acknowledge financial support from CCPR’s Population Research Infrastructure Grant P2C from NICHD: P2C-HD041022, CCPR’s Population Research Training Grants T32 from NICHD: T32-HD007545, and the Institute on Global Conflict and Cooperation. All errors are my own.
1 Introduction

The War on Drugs has been characterized by intensive police interventions in the drug market, with $100 billion per year spent on drug law enforcement worldwide (Rolles et al., 2016). Despite this rigorous enforcement, the prices of illegal drugs have remained low while drug use remains widespread (Storti and Grauwe, 2009). Consequently, some jurisdictions have sought alternative approaches, such as diverting drug users to rehabilitation programs (Mueller-Smith and Schnepel, 2021). However, these policy changes focus only on the retail side of the drug market—dealers selling to users. They therefore ignore the source of the drugs: the wholesale side of the market, including international drug trafficking, which in the United States is responsible for bringing in 82 percent of domestically consumed drugs (Atkinson, 2020). Moreover, because the determinants of international drug trafficking are poorly understood, policymakers are left without sufficient information to craft alternative policies.¹

In this paper, I provide the first estimates of the effect of immigrants on illegal drug trafficking, and the role of immigration policy as a tool to combat the illegal drug trade. A large literature suggests that immigrants are key facilitators of international trade, taking advantage of social connections to their origin country (Peri and Requena-Silvente, 2010; Combes et al., 2005; Head and Ries, 1998). These same social connections may also facilitate illegal trade, though there exists no quantitative evidence on immigrants and illegal trade. Moreover, the Becker-Ehrlich model of crime (Becker, 1968; Ehrlich, 1973) suggests that the diminished earnings prospects available to unauthorized immigrants will result in a higher propensity to participate in financially motivated illegal activities, such as trafficking illegal goods. Understanding how immigrants and immigrant legal status affect drug trafficking are critical for informing the current debate on immigration policies.²

I use novel data on the universe of large drug confiscations to estimate the causal effect of immigrants and immigrant legal status on illegal trafficking. I make two key findings. First, I estimate that immigrants raise illegal drug trafficking flows between their origin and host countries. I find suggestive evidence pointing towards two mechanisms which drive the immigrant-drug trafficking relationship: that immigrants’ social connections reduce bilateral trade costs, and that immigrant exposure to drug trafficking in their country of origin raises

¹To the extent that we know anything about the determinants of international drug trafficking, we know that policing which focuses on drug interdiction is ineffective. For example, Mejia and Restrepo (2016) estimate that the cost of intercepting the marginal gram of cocaine coming to the United States from Colombia is $175,000, about a thousand times higher than the retail price. Castillo et al. (2020) show that major drug confiscations can increase violence further along trafficking routes.

²The Trump administration, for example, claimed Mexican immigrants brought drugs to the U.S. while opposing any path to legal status for unauthorized immigrants.
the likelihood of participating in trafficking in the immigrants’ host country. My second key finding is that granting immigrants legal status reduces illegal drug imports, consistent with the Becker-Ehrlich model of crime.

Credibly establishing a causal relationship between immigrants and drug trafficking is challenging for two reasons. First, the illegal nature of trafficking makes measurement difficult. Second, other factors (such as geography) may affect both the distribution of immigrant populations and illegal drug trafficking.

To make progress on measuring illegal drug trafficking, I leverage uniquely detailed data on drug confiscations that include information on which country the drugs were trafficked from. In particular, I use a database of individual drug confiscation events as a proxy for actual drug flows in the context of Spain, a country with high-quality reporting of data on drug confiscations. These data report where each drug confiscation occurred within Spain, from which country the drugs were trafficked, and to which country the drugs were intended to be trafficked, thus providing insight into the region-to-region network of illegal drug trafficking. To validate that this indirect measure captures variation in actual flows of illegal goods, I compare confiscations to survey-based measures of drug use and availability. I find that more confiscations correspond to more drug use and availability. The data and validation are discussed in Section 2.

To identify the causal impact of immigrants on drug trafficking, I estimate a gravity equation, the workhorse empirical model in the international trade literature used to explain the volume of trade flowing from one region to another (Tinbergen, 1962; Head and Mayer, 2014). I estimate a gravity equation of illegal drug trafficking, relating the likelihood or value of drug trafficking between a given foreign country and a given Spanish province with the number of immigrants from that country living in the province. Because I observe origins and destinations for both drugs and immigrants, I can flexibly control for observed and unobservable features of each country and each Spanish province using country and province fixed effects.

The rich set of fixed effects afforded by the gravity equation allows me to control for unobserved heterogeneity that may bias my estimates, including unobserved variation in policing enforcement. As in many studies of the economics of illegal behavior, I rely on official records based on enforcement actions carried out by police to proxy for true illegal activity (Pinotti, 2020). However, the rich variation across origins and destinations in the gravity model allows me to control for policing enforcement intensity at both the immigrants’ nationality and province level, which has not been feasible in prior studies on immigrants and crime.

There may still be factors at the country-province pair level (and therefore are not ab-
sorbed by country or province fixed effects) which drive both drug trafficking and immigration from the country to the province. For example, Morrocan immigrants and Moroccan drug traffickers may be drawn to the province of Barcelona for its familiar Mediterranean climate. To address this potential endogeneity, I adapt the instrumental variables approach developed by Burchardi et al. (2019) to generate exogenous variation in the number of immigrants from a given country living in a given Spanish province. The instrument relies on the intuition that immigrants from, for example, Morocco, are likely to settle in Barcelona if many Moroccan immigrants are arriving in Spanish provinces outside Barcelona at the same time that many non-African immigrants are settling in Barcelona. In particular, the instrument interacts the “pull” of Spanish province $d$ to immigrants—measured as the share of immigrants in a given decade settling in $d$—with the “push” to immigrate from origin country $o$—measured as the number of immigrants from $o$ entering Spain in a given decade.

I find that a higher immigrant population from a given origin country facilitates the import and export of illegal drugs from and to that origin country. For an average Spanish province, I find that a 10% increase relative to the mean in the number of immigrants from a given origin country raises the likelihood that illegal drugs trafficked from that origin country will be confiscated locally by 0.8 percentage points. Similarly, a 10% increase in the number of immigrants relative to the mean from a given origin country raises the likelihood that drugs intended for export to the immigrants’ origin country will be confiscated locally by 0.3 percentage points. I discuss the baseline gravity estimation and results in Section 3.

I find two mechanisms drive my results, discussed in Section 4. First, immigrants’ social connections to their origin country—e.g., family, friends, or professional contacts—reduce the search costs of arranging import and export transactions. My quantitative evidence is consistent with the extant qualitative evidence that immigrants reduce information frictions and transaction costs for illegal imports and exports. Second, I find that immigrant exposure to drug trafficking in their origin country corresponds to greater trafficking between their host and origin countries. Finally, I rule out that immigrants’ preferences can explain my results.

Turning to immigration policy, I find that immigrant legal status crucially mediates the effect that immigrants have on illegal trafficking, as discussed in Section 5. To understand the role of legal status, I estimate the effect of immigrants on drug trafficking separately by immigrant legal status using the gravity specification. I find that my baseline estimates for imports are driven primarily by irregular immigrants, consistent with the Becker-Ehrlich model of crime. However, regular immigrants drive the estimated baseline effect for exports to the immigrants’ origin country. The effect of regular immigrants on exports results from the fact that Spain’s primary export destinations for illegal drugs are countries within the
European Union, where all E.U. immigrants to Spain have de facto regular status. Moreover, in contrast to illegal imports, illegal exports are often conducted by wholesale distribution companies whose fleets of trucks can easily transport both legal and illegal goods. The individuals running trafficking operations within these firms are typically owners or managers of the firm, and thus must be citizens or immigrants with legal status.

**Literature and Contribution.** This paper makes a novel contribution to the literature on illegal drug trafficking, what causes it and what policies most effectively combat it. In particular, this paper provides the first causally identified estimates of the effect of immigrants and immigrant legal status on illegal trafficking. Economists have thus far been completely absent from the small literature studying this question, despite its policy importance. Instead, one can find a few papers by criminologists Berlusconi et al. (2017), Giommoni et al. (2017), and Aziani et al. (2019), who use cross-country data on drug confiscations to assess how immigrant populations correlate with drug confiscations. However, these papers use significantly more aggregated data than I do, do not address the endogeneity of migration and drug trafficking, and say nothing about underlying mechanisms.

Further, a number of studies look at the causes and consequences of the illegal drug trade. For example, Abadie et al. (2014) and Mejía et al. (2017) examine the effects of law enforcement crackdowns on regional drug cultivation while Castillo et al. (2020) and Dell (2015) estimate how crackdowns affect drug violence. I use data measuring region-to-region drug trafficking, which allows me to study the bilateral determinants of trafficking (such as immigrants). In contrast, such analysis was impossible using the regionally aggregated measures of drug trafficking used in prior studies.

This article also contributes to the debates on the costs and benefits of immigration and on which immigration policies host countries should adopt. Much of the literature on the consequences of immigration focuses on labor market outcomes. An emerging set of research papers studies how immigrants affect local crime. Prior research on immigration and crime tends to focus on the labor market opportunities available to immigrants (Bell et al., 2013; Spenkuch, 2014; Pinotti, 2017; Freedman et al., 2018). I provide evidence for a new mechanism linking immigration and crime: immigrants’ social connections to their home country. I further show that exposure to crime in immigrants’ origin country may affect immigrants likelihood to participate in crime in their host country, consistent with

---

3See, for example, Monras (2020), Dustmann et al. (2013), Ottaviano and Peri (2012), Borjas (2003), and Card (2001). For a recent review of the literature, see Dustmann et al. (2016).
4Stuart and Taylor (2021) show a different way in which social networks affect crime among migrants, demonstrating that social connections among migrants in the destination improves their local legal job prospects, and thereby reduces crime.
This paper also contributes to our understanding of what factors shape trade costs. Trade costs are hard to rationalize based on observables, such as transportation costs and tariffs (Anderson and Van Wincoop, 2004). Information frictions in trade are one key factor that can account for a sizable portion of trade costs (Allen, 2014; Chaney, 2014; Startz, 2021). Such frictions in international illegal goods markets are likely to be particularly salient, given the challenges inherent in finding import or export partners for an illegal substance where above-ground search and matching is made impossible by intensive policing. Surprisingly, then, there is mixed evidence about immigrants raising trade even though their social networks (i.e., having friends, relatives, and professional contacts back in their origin country) should help to overcome information frictions. For example, Burchardi et al. (2019) find no effect of immigrants on trade flows while others such as Parsons and Vézina (2018), Peri and Requena-Silvente (2010), and Combes et al. (2005) find a positive effect. However, legal trade has many non-information frictions, such as tariffs, customs inspections, international contracting and trade credit. Therefore, the ideal market in which to test how information frictions affect trade flows is one in which such frictions are large.

2 Background and Measurement of Drug Trafficking

2.1 Background

Illegal Drugs. Cocaine and cannabis are among the most commonly consumed illegal drugs in the world (p.7, UNODC, 2020c). Spain is a key entry point for much of the cocaine and cannabis consumed in the European illegal drug market.5

Illegal drugs typically pass through many countries between the production location and the final consumption location. Cocaine, for example, is grown almost exclusively in three countries in the world: Colombia, Peru, and Bolivia. Cocaine typically passes through intermediary regions such as Mexico or West Africa on the way to consumer markets in the United States and Europe (p. 30, UNODC, 2020b).

Cannabis, by contrast, “is produced in almost all countries worldwide,” and is therefore less traded across regions (p. 67, UNODC, 2020b). Nevertheless, a substantial amount of cannabis is still trafficked across international borders (p. 71-73, UNODC, 2020b).

In Spain, confiscations of domestic cannabis plants are quite small compared to the amount of cannabis confiscated arriving from abroad (Alvarez et al., 2016). Amphetamines can also be produced locally, but are a small part of the Spanish market, with only 2% of

drug treatment patients seeking help for an amphetamine addiction. This fraction is roughly in line with the share of amphetamines in total confiscations observed in the UNODC data.\footnote{For the distribution of drug treatment patients by drug, see https://www.emcdda.europa.eu/countries/drug-reports/2019/spain_en. For the distribution of confiscations by drug amongst Spanish drug confiscations, see Figure D.1.}

Due to the intermediary-intensive nature of trafficking, social connections between countries may facilitate trafficking routes.\footnote{The existing evidence on this question is, however, entirely qualitative. The present paper aims to fill this gap in the literature by providing the first quantitative evidence on social networks and trafficking.} In a set of interviews in the United Kingdom conducted by Matrix Knowledge Group (2007), jailed traffickers shared the importance of social ties. Employees in the drug trafficking sector are typically recruited through employers’ existing social networks\footnote{A number of interviewees indicated that the importance of trust meant that they only recruited employees [for their smuggling organization] largely through their existing social networks.” (Marsh et al., 2012)}, and traffickers also noted examples in which a shared nationality raised trust between individuals seeking to conduct illegal trade transactions.\footnote{For example, “[one convicted drug trafficker] was from Ghana. In 2000 he was approached by a Ghanian friend to manage his drug business in the United Kingdom. He was trusted by the dealers he had to manage because they knew his family in Ghana.” (Marsh et al., 2012)} Proximity to immigrants from a variety of drug source countries was seen as advantageous as it reduced search costs.\footnote{For example, one convicted trafficker said that to import cocaine into the United Kingdom, “You need to know someone in the West Indies but this is not difficult to do. London is multicultural, you can meet a contact.” (Matrix Knowledge Group, 2007)} In a study of Canadian drug traffickers, Desroches (2005) reports that among 34 jailed traffickers, nearly all chose to work exclusively with their own ethnic group.

Reducing search costs is particularly important for international traffickers, as they typically cannot search online for better prices or to investigate the quality of the products remotely, and must also be careful when communicating with existing contacts over the phone or internet for fear of police wiretaps.\footnote{While the so-called Darknet of online illegal purchases may eventually make cross-border purchasing more frictionless, it remains a tiny fraction of the global retail market for illegal drugs in the U.S. and Europe.} Moreover, in the context of legal trade, Rauch and Trindade (2002) note that punishment of cheating firms within a migrant network can facilitate trade given incomplete contracts, which are particularly salient in the case of illegal transactions.

**Immigration.** Spain has experienced tremendous amount of immigration in recent decades. Between 1991 and 2011, the share of immigrants in Spain’s population rose from below 1% to well over 10%, as shown in Appendix Figure D.2, representing “the highest rate of growth of the foreign-born population over a short period observed in any OECD country since the Second World War” (OECD, 2010).

Immigrants without legal status, or irregular immigrants, are a common feature of im-
migration in Spain. Irregular immigrants are defined as those living in the country without a residency permit, and they usually enter Spain through legal means (González-Enríquez, 2009). They include immigrants who overstay their tourist visas and remain in Spain beyond the terms of their temporary residence permits.\footnote{Irregular immigrants who enter Spain via either crossing the Strait of Gibraltar by boat or by illegally entering the Spanish North African cities of Ceuta or Mellila are a small fraction of irregular immigrants, though they garner a disproportionate share of press coverage (González-Enríquez, 2009).} Surveys of immigrants in Spain have found high rates of immigrant irregularity (González-Enríquez, 2009). More recently, Gálvez Iniesta (2020) finds that 11 to 13 percent of non-EU immigrants in Spain lack legal status as of 2019.

Concurrent with its high levels of immigrant irregularity has been Spain’s relatively more generous provision of public services to irregular immigrants. For example, irregular immigrants are eligible to access the country’s public healthcare and education systems so long as they enroll in their local population registry. These benefits create a strong incentive for irregular immigrants to register, a fact that I leverage to measure irregular migrant prevalence in Section 5.1.

### 2.2 Drug Trafficking Data Description

Data limitations typically complicate the study of illegal activity. In this study, I use data on confiscations of illegal drugs by law enforcement to proxy for actual illegal drug flows. To validate that drug confiscations capture variation in actual flows of illegal drugs, I compare confiscations to survey-based measures of drug availability at the province level.

I use a database of nearly 10,000 individual drug confiscation events to proxy for actual drug flows in the context of Spain, a country with high-quality reporting of drug confiscations.\footnote{I discuss my cleaning procedures for these data, how Spanish law enforcement creates the data, and compare Spain’s data to that of other countries in Appendix A.} Using enforcement-based measures as a proxy for illegal and therefore hard-to-observe activity is typical in the study of crime. For example, Dell (2015) uses confiscations of illegal drugs in a region as a proxy for the amount of illegal drugs flowing through the region.\footnote{Whereas my data on drug confiscations are at the bilateral (region-to-region) level, Dell (2015) can only observe data aggregated to the region-level.} Similarly, Dube et al. (2016) use the number of opium poppy and cannabis plants eradicated as a proxy for cultivation.

I measure drug confiscations using a novel dataset of individual wholesale-level confiscation events compiled by the United Nations Office of Drugs and Crime (UNODC). The UNODC data include reported large drug confiscations. An observation in these data is a single drug confiscation event, which provides details on the drug type, amount confisc-
cated, the country from which the drugs were trafficked, the country to which the drugs were intended to be trafficked, and the location of the confiscation. By including both the locality of a confiscation and its country of departure, I observe the bilateral linkage for each confiscation event.

I focus on Spain due to the high quality of reported confiscations data. While other countries also report drug confiscations data to the UNODC, reporting tends to be less comprehensive and more irregular outside Spain (see Appendix Figure A.1). For example, Spain reports the country of origin for nearly 70 percent of confiscations, whereas the average across all other countries is just 3 percent of confiscations.

To transform quantities confiscated into dollar amounts, I use illegal drug prices reported by the Centre of Intelligence Against Organized Crime at the Spanish Ministry of the Interior.\textsuperscript{15}

Country of origin and intended destination for each drug confiscation in the dataset are assigned based on subsequent investigation, where country of origin refers to the most recent foreign country the drugs had been in (not necessarily the country in which they were produced). For some drug interdictions, assignment of origin and destination country is fairly straightforward. For drugs confiscated from airline passengers upon arrival at an airport, the most common mode of transport of confiscated drugs as shown in Appendix Figure D.3, the origin country is the passenger’s departure country and destination country is the passenger’s ultimate destination on their travel itinerary. For less straightforward cases, such as the case of drug gangs transporting cocaine intercepted in the Atlantic Ocean off the Galician coast, the country of origin and destination is determined based on additional information such as suspect and witness interviews and communicating with law enforcement agencies in the suspected origin and destination countries. If a person is arrested within Spain for drug trafficking but is outside an airport or port, the country of origin of the drugs will be determined on the basis of the police investigation carried out, including any statements made by the arrested person.\textsuperscript{16}

Four facts emerge when looking at the data on confiscations in Spain. First, nearly all drugs confiscated by Spanish authorities are cocaine or cannabis, with negligible amounts of amphetamines and heroin as shown in Appendix Figure D.1. For this reason, I restrict my analysis to cocaine and cannabis confiscations.\textsuperscript{17}

\textsuperscript{15}Specifically, these are prices in dollars for 2012 for heroin, cocaine, amphetamines, and cannabis as reported by Spain to the UNODC.

\textsuperscript{16}The preceding description is based on discussions with representatives from the Spanish Ministry of the Interior.

\textsuperscript{17}My baseline results do not change qualitatively or in magnitude when including heroin and amphetamines. Results available upon request.
Second, the distribution of drug confiscation amounts is right skewed as shown in Appendix Figure D.4, with many moderate-sized confiscations (the median confiscation value is $48,283) and a few huge confiscations (the mean confiscation value is $509,571). Third, Spain imports cannabis almost exclusively from Morocco and cocaine from Latin America, as shown in Appendix Figure D.5, and Spain exports drugs primarily to the rest of Europe and the Mediterranean region, as seen in Appendix Figure D.6. Importantly, a variety of Latin American countries export cocaine to Spain, providing useful variation for the subsequent empirical estimation. Finally, there is substantial spatial variation across Spain in the intensity of drug trafficking, as shown in Appendix Figure D.7.

2.3 Drugs Data Validation Exercise

In this section I provide evidence indicating that the drug confiscations data are a valid proxy for actual illicit drug flows. In particular, I correlate confiscations of imported drugs per capita (net of confiscations destined for other countries) in a locality to the availability of drugs in that locality. This approach is valid if local production is small relative to the local market, an assumption likely to hold in Spain as discussed in Section 2.1.

To measure local drug availability, I turn to the Survey on Alcohol and Drugs in Spain (EDADES). The EDADES is a nationally representative biennial survey on substance use in Spain, interviewing 20,000 to 30,000 persons per survey. Respondents are asked how easy it is for them to access various illegal drugs within 24 hours, how much of a problem illegal drugs are in their neighborhood, and whether they have personally used various drugs. I aggregate responses across the 2011, 2013, and 2015 survey rounds to create a measure of province-level drug use and drug availability consistent with the baseline estimation period of 2011 to 2016 used in Section 3.

I find that confiscations of illegal drugs positively correlate with a wide range of measures of local drug availability. In Figure 1, I plot the correlation coefficient between the reported ease of obtaining a particular drug within 24 hours and the amount of that drug which was confiscated in the province per capita between 2011 and 2016. Consistent with confiscations corresponding to real flows of illicit drugs, I find that when a higher proportion of respondents say it is “impossible” to obtain a particular drug, the amount of that drug confiscated in the province tends to be lower. Conversely, I find that the proportion of respondents saying it is “easy” or “very easy” to obtain a drug correlates positively with the amount of that drug confiscated in the province.

Respondents could reply that it was impossible, difficult, relatively easy, or easy to obtain the drug within 24 hours.

18
Figure 1: Correlation of Drug Confiscations to Drug Availability by Drug

Notes: This figure shows Pearson correlation coefficients between the amount of confiscations per capita of a particular drug and the fraction of respondents in a province who report finding it impossible/difficult/relatively easy/very easy to obtain that drug within 24 hours. Correlations are estimated on a cross-section of 52 Spanish provinces, averaged across 2011 to 2016 for drug confiscations and across the 2011, 2013, and 2015 waves of the Survey on Alcohol and Drugs in Spain (EDADES).

In Figure 2 I plot the correlation coefficients of additional measures of local drug availability and consumption to the value of confiscations per capita across all illicit drugs. In the first bar of the figure, the local drug availability measure is the fraction of respondents answering “very” to the question, “Thinking about where you live, how important of a problem do you think illegal drugs are?” For the remainder of the bars, the drug availability measures are the fraction of respondents who report seeing various drug behaviors exhibited by others in their neighborhood.\textsuperscript{19} For each survey question, confiscations either vary positively with local drug availability or have a correlation near zero.

I also find that confiscations are correlated with respondents’ personal drug use history, as shown in Appendix Figure D.8. I find a positive correlation between local confiscations and personal use of cocaine and cannabis, with the exception of the percent of a province’s respondents reporting that they have ever consumed cannabis. Taken together, these results suggest that confiscations by law enforcement are a valid proxy for actual flows of illicit drugs.

\textsuperscript{19}Respondents are asked how often in their neighborhood they see people (i) drugged and on the ground, (ii) inhaling drugs in paper or aluminium, (iii) injecting drugs, (iv) selling drugs, (v) smoking joints, (vi) snorting drugs by nose, and (vii) leaving syringes lying on the ground.
Notes: This figure plots Pearson correlation coefficients between illegal drug confiscations (measured in dollars) per capita across all drugs and the fraction of respondents in the province who reported observing the listed drug-related behaviors either “frequently” or “very frequently” or, for the first bar on the left, “very.” The behaviors listed are, from left to right: (i) “Thinking about where you live, how important of a problem do you think illegal drugs are?”; (ii) “How often in your neighborhood are there drugged people on the ground?”; (iii) “How often in your neighborhood are there people inhaling drugs in paper/aluminium?”; (iv) “How often in your neighborhood are there people injecting drugs?”; (v) “How often in your neighborhood are there people selling drugs?”; (vi) “How often in your neighborhood are there people smoking joints?”; (vii) “How often in your neighborhood are there people snorting drugs by nose?”; (viii) “How often in your neighborhood are there syringes lying on the ground?” I drop cannabis from the drug confiscation variable in the correlations for the questions on people snorting or injecting drugs or syringes being on the ground, since cannabis is generally not snorted or injected. Correlations are estimated on a cross-section of 52 Spanish provinces, averaged across 2011 to 2016 for drug confiscations and across the 2011, 2013, and 2015 waves of the EDADES (Survey on Alcohol and Drugs in Spain).

2.4 Immigration Data

To measure bilateral immigrant populations and inflows, I use the decennial Spanish census. I measure the number of immigrants from an origin country by counting the number of individuals with citizenship from that origin country. In the case of dual citizens, the non-Spanish country of citizenship is reported.

To construct the instrumental variable, described in Section 3.3, I also use data from the Spanish Census on immigrant inflows. To measure bilateral inflows for each decade, I count the number of immigrants who arrived from the origin country and reside in the Spanish province within the last 10 years. For example, to count the inflows from Morocco.

\[\text{In unreported regressions I find that changing the definition of immigrant to be based on country of birth has virtually no qualitative or quantitative effect on my results.}\]
to Barcelona between 1991 and 2001, I refer to the 2001 Spanish Census and count the number of Moroccans living in Barcelona who report having arrived in the previous 10 years.

Because the set of immigrant origin countries reported varies across census waves, I aggregate countries into groups consistent across both the 2001 and 2011 Spanish Censuses. In both waves I observe 102 individual origin countries, and group remaining countries by continent into country groups (e.g., “Other countries, Africa”). In total, I exploit variation across 107 origin regions.  

3 Bilateral Empirical Analysis

I first seek to understand whether immigrants facilitate drug trafficking between their origin and home region. To do so, I relate drugs coming from a given origin country and confiscated locally to the number of immigrants from that origin country and living locally. Exploiting this country-province-pair level variation, I can flexibly control for observed and unobserved characteristics of the country and the province. Because migration and drug trafficking may be jointly determined by other factors, such as geographic or climatic similarity between country and province, I generate exogenous variation in the immigrant population using an instrumental variable strategy.

3.1 Preliminary Evidence

There exists a positive unconditional correlation between the number of immigrants and the value of drugs confiscated at the country-province level, as shown in Appendix Figure D.9. This relationship may be driven by a variety of factors, such as origin- or destination-specific institutions (e.g., local labor market strength) or by country-province-pair-specific factors such as climatic similarity. Consider the case of Morocco, a major source of both immigrants and cannabis flowing into Spain. Spatially, there is substantial overlap between the immigrant population and the location of confiscations of cannabis coming from Morocco (often on Spain’s southern and eastern coast), as shown in Figure 3.

A natural explanation for this correlation is that geographic distance drives both trafficking and immigration from Morocco and into southern Spain (since Morocco is directly to the south of Spain). Other confounders, such as the similar climate enjoyed by parts of Spain and Morocco may also explain this correlation. To evaluate the causal relationship between immigrants and drug trafficking and rule out such confounders, I next estimate a

---

21In unreported regressions, my results are robust to dropping the 5 residual country groups from the estimation.
gravity equation of drug confiscations in the context of Spain.

### 3.2 Gravity Regression

The two-dimensional nature of my data and the gravity equation allows me to flexibly control for origin- and destination-specific characteristics that may shape trafficking and migration. This estimation strategy also allows me to deal with concerns about enforcement intensity variation driving observed drug confiscations, an improvement on the existing literature relating immigration to crime which typically relies on cross-region variation (and not region-by-region variation as I do).

I estimate a baseline gravity equation of the form

$$
Y_{o,d}^{2011-2016} = \alpha_o + \alpha_d + \beta M_{o,d}^{2011} + \delta \ln(Dist_{o,d}) + \varepsilon_{o,d}
$$

where $\alpha_o$ and $\alpha_d$ are country and province fixed effects, respectively; $Y_{o,d}$ is either a dummy for whether any drug imports from $o$ into $d$ were confiscated between 2011 and 2016 or a dummy for whether any export from province $d$ to country $o$ were confiscated between 2011 and 2016; and $Dist_{o,d}$ is the distance in kilometers between $o$ and $d$ taken from Peri and Requena-Silvente (2010). $M_{o,d}^{2011}$ is a measure of the number of immigrants from $o$ living in $d$, defined as the log of one plus the number of immigrants in $d$ from $o$, measured in thousands (I provide justification for my functional form choice as well as robustness to alternatives in Appendix Section C.2). The error term $\varepsilon_{o,d}$ includes all omitted bilateral forces that may shape drug trafficking. I measure the immigrant population $M_{o,d}^{2011}$ using the 2011 Spanish
Census distributed by the Minnesota Population Center (2019), described in Section 2.4.

The origin country and destination province fixed effects are key to my identification strategy. The origin fixed effect $\alpha_o$ controls for, among other factors, the economic development, institutions, and crime in the origin country as well as national-level policies of Spain vis-a-vis origin country $o$. These country-pair level policies can include visa regimes, customs regulations, and national law enforcement cooperation. Similarly, the province fixed effect $\alpha_d$ controls for province $d$ factors common across origins, such as province $d$’s police force strength and the economic conditions in $d$. For example, if the labor market in Barcelona attracts immigrants and raises the demand for cocaine, $\alpha_d$ will absorb such variation to the extent that it is constant across origin countries. Thus $\beta$ is identified from variation in drug confiscations and immigrant populations across country-province pairs.

I cluster standard errors at the origin country-level in my baseline specification, though my results are robust to alternative standard error choices (see Appendix Table C.1).

I estimate equation 1 separately for import confiscations and export confiscations. To measure intended exports, I consider drugs confiscated in $d$ but which were intended to go to country $o$.\footnote{In the data, I observe substantially more confiscations on the import margin than I do on the export margin. In particular, the value of import confiscations is nearly 6 times larger than that of export confiscations between 2011 and 2016. This is likely due to the greater difficulty in law enforcement’s ability to pin down the intended destination relative to the actual country of trafficking origin. In addition, country’s law enforcement priority is typically on preventing entry of illegal drugs (and their local consumption) rather than their exit.}

### 3.3 Instrumental Variables Approach

While country and province fixed effects absorb many potential confounders in my baseline specification, there may still be unobserved factors at the country-province-pair level, such as the geographic or climatic similarity between a foreign country and a Spanish province. Consider, for example, that Morocco shares a similar Mediterranean climate with Barcelona. Suppose this similar climate is preferred by Moroccan immigrants, who are then more likely to settle in Barcelona. If Moroccan narcotraffickers are more skilled at piloting their narcoboats in the Mediterranean climate, then similar climate may also drive Moroccan drug traffickers to Barcelona. Hence similar climate is a country-province-specific confounder which may drive both immigration and drug trafficking.

To obtain variation in country-to-province-specific immigration that is exogenous to such concerns, I follow Burchardi et al. (2019) and develop a set of leave-out push-pull instruments for the number of immigrants arriving in a given region and coming from a given origin.
These instruments produce plausibly exogenous variation in bilateral immigrant inflows. I use two decades of inflows between 1991 and 2011 to predict the 2011 population size of immigrants from a given origin country living in a Spanish province.

The intuition of the instrument is that a social connection, in this case an immigration decision, between an origin and a destination is likely to occur when the origin is sending many immigrants at the same time the destination is pulling in many immigrants. For example, suppose we want to predict the number of Moroccans settling in the province of Barcelona. To do so, I look at the number of Moroccans flowing into Spain and the number of immigrants from all origin countries settling in Barcelona for the same decade. In particular, the instrument will predict Moroccans to settle in Barcelona if large numbers of immigrants from other countries are also settling there. Similarly, if many immigrants from other origins are settling in Barcelona, then an immigrant arriving from Morocco will be predicted to settle in Barcelona.

Concretely, the migration leave-out push-pull instrument interacts the arrival into Spain of immigrants from origin country $o$ (push) with the attractiveness of different destinations to immigrants (pull) measured by the fraction of all immigrants to Spain who choose to settle in province $d$. A simple version of the instrument is defined as

$$\tilde{IV}_{o,d}^D = I_o^D \times \frac{I_d^D}{I^D},$$

where $I_o^D$ is the number of immigrants from origin $o$ coming to Spain in decade $D$, and $I_d^D / I^D$ is the fraction of immigrants to Spain who choose to settle in province $d$ in decade $D$.

Still, there may be threats to the exogeneity of the instrument as defined thus far. One potential exclusion restriction violation occurs when endogenous bilateral immigration is a large share of the instrument’s components. For example, if all Moroccan immigrants coming to Spain choose to settle in Barcelona due to its similar climate, then the instrument will include climate similarity in its prediction of bilateral immigration. A simple solution then is to leave out bilateral immigration ($I_{o,d}^D$) when computing the instrument.

However, there might also be spatial correlation in confounding variables. For example, both Moroccan and Algerian immigrants and drug traffickers may go to Barcelona for the same reason: a similar climate. Then, even leaving out Morocco-to-Barcelona immigration flows when computing the instrument is not sufficient, because now the Algerian immigration

---

23This approach also bears resemblance to Sequeira et al. (2020), who generate exogenous variation in local immigrant populations by interacting the inflows of immigrants to the U.S. (push) and the locations of new railroads in the U.S. (pull). Note that because the push-pull instrument does not rely on variation in the lagged size of ethnic enclaves, it uses different variation than the popular shift-share instrument of Card (2001). Card’s (2001) ethnic enclave instrument is typically applied to regional regressions, in contrast to this study’s region-by-region-level estimation.
flows to Barcelona (used to predict Morocco-to-Barcelona flows) are contaminated with the confounding climate preference.

To avoid such endogeneity, I again follow Burchardi et al. (2019) and leave out both the continent of origin country $o$ and the autonomous community (the highest-level administrative unit in Spain) of province $d$ to construct the instrumental variable that I use in my baseline estimation:

$$ IV_{o,d} = cd_{o,d} \times d_{0,c} $$ (2)

where $a(d)$ is the set of provinces in the autonomous community of $d$, and $c(o)$ is the set of countries on $o$’s continent. Therefore, $D_{a,d}$ is the number of immigrants from $o$ settling in Spain outside the autonomous community of province $d$ in decade $D$, and $D_{c,c}$ is the fraction of immigrants to Spain from outside of the continent of $o$ who choose to settle in province $d$. In our running Morocco-Barcelona example, the instrument interacts the number of Moroccan immigrants settling outside Catalonia ($D_{a,d}$) with the fraction of non-African immigrants arriving in Spain who choose to settle in Barcelona ($D_{c,c}$).

One advantage of the leave-out structure of the instrumental variables is that it neatly deals with concerns over reverse causality. For example, drug trafficking organizations may send workers from an origin country to migrate to the Spanish provinces into which they hope to traffick drugs. However, these bilateral flows, as well as any historical bilateral flows, are not used for the prediction of the bilateral immigrant population.

The identification assumption is that any confounding factors that make a given province more attractive for both immigration and drug trafficking from a given country do not simultaneously affect the interaction of (i) the settlement of immigrants from other continents with (ii) the total number of immigrants arriving from the same country but settling in a different autonomous community. A violation may occur if, say, immigrants skilled at drug trafficking from Morocco tend to settle in the province of Barcelona and immigrants skilled in drug trafficking from Lebanon settle in Alicante (Barcelona and Alicante are in different autonomous communities) in the same decade and for the same reason: a preference for the familiar Mediterranean climate. This violation is only quantitatively meaningful if Moroccans are a large fraction of immigrants settling in Barcelona, and if Lebanese immigrants are a large fraction of the immigrants settling in Alicante. I empirically test the plausibility for such a violation to drive my baseline results in Appendix Section C.3. To do so, I leave out countries or provinces with correlated immigrant populations from the construction of the instrument, and conclude that such correlation between migration location choices across provinces in different autonomous communities or across countries from different continents.
is unlikely to significantly affect my results.\textsuperscript{24}

In order to account for spillovers in immigration flows between decades and potential nonlinearities, I include second-order interaction and squared terms for the instruments, which allow me to better predict the nonlinear immigrant population measure that I use. Nevertheless, my baseline results are robust to more parsimonious sets of instruments as shown in Appendix Section C.3.

To get a sense for the variation captured by the “pull” component of the leave-out push-pull instrument, I show both time-series variation and cross-sectional variation in immigrant location decisions in Figure 4. The top two maps of Figure 4 show the time series variation that the leave-out push-pull instrument leverages, namely the relative attractiveness (pull) of each Spanish province by decade. To do so, I project immigrant inflows (from all origins) on decade fixed effects and plot the residuals. The figure shows that immigrants favored inland destinations in Spain’s northwest and center during the 1990s, but preferred to settle in coastal regions in the country’s east during the 2000s.

There is also substantial cross-sectional variation in immigrant location decisions depending on the country of origin. I consider several countries from Latin America, a major source of both illegal drugs and immigrants for Spain. I plot the location decisions of immigrants as of 2011 for a selection of countries in the bottom four maps of Figure 4.\textsuperscript{25} These maps show that even for immigrants from the same continent, location decisions varied widely. Ecuadorian immigrants chose to settle in Spain’s center and east, while Brazilians and Mexicans favored parts of the north and south of Spain. Costa Rican immigrants preferred to settle in the west, and unlike immigrants from the other origins, sent disproportionately fewer migrants to Madrid or Barcelona.

### 3.4 First-Stage

In Figure 5, I plot the residualized first-stage fit of the instruments for the two decades of predicted inflows. All variables are residualized on the set of country and province fixed effects as well as log distance. The instruments vary positively with the log number of immigrants, as expected. Moreover, the first-stage strength is driven by variation in the important drug sending and receiving regions: Morocco (the top exporter of cannabis to Spain), Latin America (the top exporter of cocaine to Spain), and Europe (the top recipient of exported Spanish drugs). In Table 1 I show first-stage regressions across different sets of instruments,

\textsuperscript{24}I further provide additional discussion of the identification provided by the instrument conditional on the set of country and province fixed effects in Appendix Section B.

\textsuperscript{25}The four countries were chosen because they all export large quantities of illegal drugs to Spain, have a substantial immigrant presence in Spain, and their immigrants have chosen to settle in different parts of the country.
Notes: The figures show immigrant location choices across Spain. The top left figure shows immigrant inflows between 1991 and 2001, while the top right figure shows immigrant inflows for the 2001-2011 period. For the top two figures, I regress the total number of immigrants (across all countries) inflowing into each Spanish province on a set of province and decade fixed effects and plot the residuals. For the bottom four figures, I regress the number of immigrants by country of origin living in the province as of 2011 on province fixed effects and a dummy for the country specified in the map title. I plot the residuals from the regression for each country in the maps. Colors correspond to the quartile of residuals for each regression, with darker colors indicating a higher quartile.

with column 3 corresponding to the regressions depicted in Figure 5. Instruments from both decades have a positive and statistically significant coefficient across specifications.

In order to interpret each first-stage coefficient as the marginal effect of predicted immigration inflows on the immigrant population, I residualize predicted immigration in 2001–2011 on predicted immigration for 1991–2001.\textsuperscript{26} For readability, I divide the instruments by 1,000. The preferred set of instruments that I use in subsequent estimation is the set of

\textsuperscript{26}This residualization has no effect on first-stage strength, only on individual coefficient magnitudes.
Notes: The figures show the conditional scatter plots of \( \text{Log immigrants} \) 2011 with the instruments for immigrant inflows for decades 1991 to 2001 (on the left) and 2001 to 2011 (on the right). Both \( \text{Log immigrants} \) 2011 and the predicted inflows are residualized on origin and destination fixed effects, log distance, and on the instrument from the left-out decade. Each point represents an immigrant origin country-by-destination Spanish province pair, with immigrant origin regions color coded. For example, immigration from Morocco to the 52 Spanish provinces is plotted with blue circles, while immigration from Latin America is plotted with red diamonds. The regressions depicted correspond to column 3 of Table 1.

instruments and second-order interactions, shown in column 4.\(^{27}\)

### 3.5 Results

I now turn to my baseline results on the effect of immigrants on confiscations of illegal drug imports and exports.

Panel A of Table 2 shows the two-stage least squares estimation results of equation 1. Column 1 refers to imports, and column 2 to exports. The coefficient estimate of the effect of immigrants on the likelihood of a confiscation of imported illegal drugs for a country-province pair is 0.176 (SE = 0.045). This estimate implies that at the mean immigrant population at the province-country-pair level, 942, a 10% increase in the number of immigrants raises the likelihood that drugs trafficked from the immigrants’ origin country will be confiscated locally by about 0.8 percentage points.\(^{28}\) For comparison, 8.4% of country-province pairs exhibited some amount of illegal drug confiscations.

In column 2, I find that immigrants also increase exports of illegal drugs. The coefficient estimate is 0.063 (SE=0.035). This estimate implies that a 10% increase in the number

\(^{27}\)Results are robust to more parsimonious sets of instruments, as shown in Appendix Section C.3.

\(^{28}\)Using \( \hat{\beta} = 0.176 \) from column 1 in Table 2, can compute: \( \mathbb{1} \left[ C_{o,d}^{2011-2016} > 0 | M_{o,d}^{2011} = 942 \right] = 0.176 \left( \ln (1 + \frac{942 \times 1.1}{1000}) - \ln (1 + \frac{942}{1000}) \right) \approx 0.0083. \)
Table 1: First Stage Regressions

<table>
<thead>
<tr>
<th></th>
<th>Log immigrants 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Predicted immigration, 1991-2001</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>(0.0325)</td>
</tr>
<tr>
<td>Predicted immigration, 2001-2011</td>
<td>0.0559</td>
</tr>
<tr>
<td></td>
<td>(0.0189)</td>
</tr>
<tr>
<td>(Predicted immigration, 1991-2001)^2</td>
<td>-0.00895</td>
</tr>
<tr>
<td></td>
<td>(0.00142)</td>
</tr>
<tr>
<td>(Predicted immigration, 2001-2011)^2</td>
<td>0.00228</td>
</tr>
<tr>
<td></td>
<td>(0.00194)</td>
</tr>
<tr>
<td>(IV 1991-2001)×(IV 2001-2011)</td>
<td>-0.00348</td>
</tr>
<tr>
<td></td>
<td>(0.00204)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Observations</th>
<th>5564</th>
<th>5564</th>
<th>5564</th>
<th>5564</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>0.687</td>
<td>0.693</td>
<td>0.698</td>
<td>0.740</td>
</tr>
<tr>
<td>Country FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Province FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Ln dist.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>1st-stage F-statistic</td>
<td>21.1</td>
<td>8.8</td>
<td>11.5</td>
<td>152.4</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table presents coefficient estimates from first-stage regressions at the country-province level. All regressions control for province and country fixed effects as well as log distance. Standard errors are clustered at the country level. Column 4 corresponds to my baseline estimation set of instruments.

of immigrants relative to the mean raises the likelihood that drugs will be exported to the immigrants’ origin country and confiscated locally by about 0.3 percentage points. The point estimate for exports may be smaller than for imports because exports are likely more difficult to measure than imports, as police prioritize preventing drugs from entering Spain rather than from leaving the country. Nevertheless, the 95% confidence intervals overlap, so I cannot rule out equality between the two coefficients.

For comparison, I show OLS estimates in Panel B. There are two biases relative to the OLS to consider. First, there may be confounding variables at the country-province-pair level which drive both immigration and drug trafficking between locations. These confounders will tend to bias the OLS estimates upwards. Second, the number of immigrants from a given country living in a Spanish province may be mismeasured, biasing the OLS estimates downwards. My two-stage least squares estimates are statistically indistinguishable from

---

29 Using \( \hat{\beta} = 0.0625 \) from column 2 in Table 2, can compute: \( I \left[ C_{d,o}^{2011-2016} > 0 \mid M_{o,d}^{2011} = 942 \right] = 0.0625 \left( \ln \left( 1 + \frac{942 \times 1.1}{1000} \right) - \ln \left( 1 + \frac{942}{1000} \right) \right) \approx 0.003. \)
Table 2: Effect of Immigrants on Drug Trafficking

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Imports</td>
<td>Exports</td>
</tr>
<tr>
<td><strong>PANEL A: 2SLS</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log immigrants 2011</td>
<td>0.176</td>
<td>0.0625</td>
</tr>
<tr>
<td></td>
<td>(0.0448)</td>
<td>(0.0347)</td>
</tr>
<tr>
<td>Observations</td>
<td>5564</td>
<td>5564</td>
</tr>
<tr>
<td><strong>PANEL B: OLS</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log immigrants 2011</td>
<td>0.140</td>
<td>0.0691</td>
</tr>
<tr>
<td></td>
<td>(0.0221)</td>
<td>(0.0215)</td>
</tr>
<tr>
<td>Observations</td>
<td>5564</td>
<td>5564</td>
</tr>
<tr>
<td>Country FEs</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Province FEs</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Log distance</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Notes: The table presents coefficient estimates from regressions of equation 1 at the country-province level. In Panel A, I instrument for Log immigrants 2011 with \{IV_{o,d} = I_{o,−a(d)}D × I_{−c(o),d}D/I_{−c(o)}D\}_{1991−2001,2001−2011}, their interaction across decades, and squared terms. The dependent variable is a dummy for whether any drugs trafficked between country o and province d were confiscated between 2011 and 2016 (imports into Spain in column 1 and exports out of Spain in column 2). All regressions control for province and country fixed effects as well as log distance. Standard errors are clustered at the country level.

the OLS estimates, suggesting that after controlling for a rich set of fixed effects, bilateral confounders do not substantially bias the OLS estimates.

3.6 Value of Drugs Confiscated

To see whether immigrants increase drug trafficking on the intensive margin, I next estimate the effect of immigrants on the value of drugs confiscated. In order to measure the value of the dependent variable in logs without dropping zero values, I use pseudo-Poisson maximum likelihood (PPML) estimation (Silva and Tenreyro, 2006). Due to the non-linearity of PPML, I take a control function approach to generating exogenous variation in the immigrant population (Petrin and Train, 2010; Morten and Oliveira, 2018).

In particular, I estimate the first-stage as in column 4 of Table 1 and add the residuals to the PPML estimating equation. The PPML first-order condition is then
\[ \sum_{o,d} (Value\ confiscated_{o,d}^{2011-2016} - \exp(\delta_o + \delta_d + \beta M_{o,d}^{2011} + \zeta \hat{\epsilon}_{o,d}^M + \gamma \ln(Dist_{o,d})) X_{o,d} = 0 \]  

(3)

where \( Value\ confiscated_{o,d}^{2011-2016} \) is the value in dollars of illegal drugs confiscated between country \( o \) and province \( d \); \( \hat{\epsilon}_{o,d}^M \) is the first-stage residual; and \( X_{o,d} \) is the vector of variables included in the exponential function (i.e., dummies for countries and provinces, \( M_{o,d}^{2011} \), \( \hat{\epsilon}_{o,d}^M \), and \( \ln(Dist_{o,d}) \)). I estimate equation (3) separately for imports and exports as in the baseline estimation.

I show the results of the PPML estimation in Table 3.\(^{30} \) In columns 1 and 3, I estimate the effect of immigrants on import and export confiscation values, respectively, without including the first-stage residuals. In columns 2 and 4 I add the first-stage residuals.

<table>
<thead>
<tr>
<th>Value of drug confiscations</th>
<th>(1) Imports</th>
<th>(2) Imports</th>
<th>(3) Exports</th>
<th>(4) Exports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log immigrants 2011</td>
<td>0.741</td>
<td>0.490</td>
<td>0.0341</td>
<td>0.649</td>
</tr>
<tr>
<td></td>
<td>(0.214)</td>
<td>(0.252)</td>
<td>(0.276)</td>
<td>(0.355)</td>
</tr>
<tr>
<td>First-stage residuals</td>
<td>0.385</td>
<td>-0.722</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.257)</td>
<td>(0.390)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3120</td>
<td>3120</td>
<td>2640</td>
<td>2640</td>
</tr>
<tr>
<td>Country FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Province FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Ln dist.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1st-stage F-statistic</td>
<td>112.5</td>
<td></td>
<td>92.0</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table presents coefficient estimates for the intensive margin from pseudo-Poisson maximum likelihood estimation at the country-province level. I instrument for \( \log immigrants_{2011} \) with \( \{IV_{o,d}^D = I_{o,-a(d)}^D \times I_{c(o),d}^D | I_{c(o)}^D \}_{1991-2001,2001-2011} \), their interaction across decades, and squared terms. The dependent variable is the value of illegal drug confiscations between country \( o \) and province \( d \) between 2011 and 2016. I implement a control function approach using Poisson pseudo-maximum likelihood estimation whereby I estimate residuals from a first-stage regression of all the instruments on \( \log immigrants_{2011} \), and then include that residual as a control in the second-stage regression as in columns 2 and 4. All regressions control for province and country fixed effects as well as log distance. Standard errors are clustered at the country level.

\(^{30}\)Note that my sample size drops in the PPML relative to my baseline. This is because PPML estimates will not exist for countries or provinces that never experience drug confiscations given my inclusion of country and province fixed effects (Silva and Tenreyro, 2010). Correia et al. (2019) argue that it is best to drop such “separated” observations from the estimation since they do not contribute to the estimation of \( \beta \). For all PPML estimates, I use the methods developed by Correia et al. (2020).
Consistent with my baseline results, I find that immigrants increase the value of drugs imported and exported. In particular, the coefficient estimate of the effect of immigrants on the value of imported illegal drugs for a country-province pair is 0.49 (SE = 0.25). This estimate implies that a 10% increase in the number of immigrants relative to the mean raises the value of drugs trafficked from the immigrants’ origin country and confiscated locally by 2.3%.\(^{31}\)

Turning to the effect of immigrants on the value of drug exports, the estimated coefficient is 0.649 (SE=0.355). This estimate implies that a 10% increase in the number of immigrants relative to the mean raises the value of drugs trafficked to the immigrants’ origin country and confiscated locally by 3.1%.\(^{32}\) As in my estimates of equation 1, the effects of immigrants on imports and exports are statistically indistinguishable. In sum, I find that immigrants increase the extensive and intensive margin of drug trafficking with their origin countries.

### 3.7 Robustness of Baseline Estimates

To establish the robustness of my baseline findings, I report a range of additional robustness checks in Appendix C. There, I show that my baseline results are robust to alternative functional form choices, variations in the set of instruments, and alternative standard error clustering. I also show that my results hold across a wide range of subsamples of the data, when estimating a panel, and that the instruments do not correlated with predetermined characteristics. Finally, I explore how much bilateral enforcement intensity or general equilibrium reallocations might affect my results.

### 3.8 Global Estimation

The results that I estimate for Spain may not be perfectly generalizable beyond the Spanish context. This may stem from the fact that Spain’s unique history and institutions, for example its proximity to Morocco as a major trafficking source, Spanish-language affinity with many other source countries, and Spain being the primary source of cannabis and cocaine for the rest of Europe.

To establish greater external validity in my results, I separately estimate a gravity regression similar to equation 1, but for the entire world, where each geographic unit \(o\) and \(d\) is a country. I do so using the UNODC Individual Drug Seizures data detailed in section 2.2,\(^{31}\)

\[ \frac{\hat{C}_{o,d}^{2011-2016} \cdot [M_{o,d}^{2011}=1.1 \times 942]}{\hat{C}_{d,o}^{2011-2016} \cdot [M_{o,d}^{2011}=942]} - 1 = \exp \left( \hat{\beta} \left( \ln \left( 1 + \frac{1.1 \times 942}{1000} \right) - \ln \left( 1 + \frac{942}{1000} \right) \right) \right) - 1 = 0.023. \]

\[ \frac{\hat{C}_{d,o}^{2011-2018} \cdot [M_{o,d}^{2011}=1.1 \times 942]}{\hat{C}_{o,d}^{2011-2018} \cdot [M_{o,d}^{2011}=942]} - 1 = \exp \left( \hat{\beta} \left( \ln \left( 1 + \frac{1.1 \times 942}{1000} \right) - \ln \left( 1 + \frac{942}{1000} \right) \right) \right) - 1 = 0.031. \]

\(^{31}\)Using \( \hat{\beta} = 0.49 \) from column 2 in Table 3 and a mean bilateral immigrant population of 942, we have:

\(^{32}\)Using \( \hat{\beta} = 0.649 \) from column 4 in Table 3 and a mean bilateral immigrant population of 942, we have:
which are available for many countries beyond Spain. The drawback of these data is that, apart from Spain, reporting of drug confiscations is often irregular and incomplete (see Figure A.1). To some extent, the country fixed effects in equation 1 will absorb country-by-country variation in data reporting quality. Moreover, I focus on drug confiscations conducted in 2010 and later, a period during which reporting of drug confiscations had much improved relative to prior years. Nevertheless, measurement error may still affect estimates to the extent that countries disproportionately report confiscations for some origin or destination countries but not others.

To measure country-pair immigrant populations, I use the United Nations’ database on migrant stocks by origin and destination for 2010. I instrument for the immigrant population using a leave-out push-pull instrument as in equation 2. To construct the instrument’s components, i.e., cross-country immigrant flows, I calculate net changes in bilateral migrant stocks between each 5-year period that the UN database reports figures. I then have instruments from four 5-year periods: 1990 to 1995, 1995 to 2000, 2000 to 2005, and 2005 to 2010.

I report the results of estimating equation 1 worldwide in Table 4. Consistent with my findings for Spain, I find that immigrants raise international imports in illegal drugs, both on the extensive margin (column 1) and the intensive margin (column 2). I similarly find immigrants raise global exports of illegal drugs (columns 3 and 4), though the effect of immigrants on the extensive margin is imprecisely estimated. These results suggest that the relationship between immigrants and illegal trade goes beyond a single country context, and extends to many countries around the world.

4 Mechanisms

Several potential mechanisms may drive the baseline effects estimated in Section 3. These include, (i) immigrants have a preference for drugs imported from their home country, (ii) immigrants reduce trade costs by reducing information barriers to international trade, and (iii) immigrants who were more exposed to drug trafficking in their home country develop drug trafficking skills, such as the ability to evade police interdiction. While challenging to completely rule out one channel and prove the predominance of another, in this section I take a first step in this direction by evaluating the relative plausibility of several mechanisms.
Table 4: Effect of Immigrants on Drug Trafficking Worldwide

<table>
<thead>
<tr>
<th></th>
<th>Imports</th>
<th>Exports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Any seizure</td>
<td>(2) Value seized</td>
</tr>
<tr>
<td>Log immigrants</td>
<td>0.0310</td>
<td>0.583</td>
</tr>
<tr>
<td></td>
<td>(0.0156)</td>
<td>(0.316)</td>
</tr>
<tr>
<td>First-stage residuals</td>
<td>-0.143</td>
<td>-0.104</td>
</tr>
<tr>
<td></td>
<td>(0.348)</td>
<td>(0.287)</td>
</tr>
<tr>
<td>Observations</td>
<td>40533</td>
<td>7683</td>
</tr>
<tr>
<td>Log distance</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Country-Year FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Province-Year FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1st-stage F-statistic</td>
<td>124.7</td>
<td>80.5</td>
</tr>
<tr>
<td>Estimation method</td>
<td>2SLS</td>
<td>PPML</td>
</tr>
</tbody>
</table>

Notes: The table presents estimates of equation 1 at the country-pair level. I instrument for the immigrant population using predicted flows defined in equation 2. I show results for the extensive margin using 2SLS in columns 1 and 3, and for the intensive margin using PPML in columns 2 and 4. Country-pair immigrant stocks are measured using UN data. Standard errors are clustered by country of origin in parentheses.

4.1 Immigrant Preferences

Atkin (2013) and Bronnenberg et al. (2012) find that immigrants and consumers in the immigrants’ home country may exhibit similar preferences for consumption goods. If these similar tastes also apply to illicit drugs, more drugs may be trafficked from the immigrants’ origin country. However, such a story would require retail drug consumers to have an implausible combination of tastes and information. Consider an immigrant from Venezuela who consumes cocaine. This immigrant would need to be able to distinguish street cocaine based on which country it was trafficked from (not produced in) by, for example, asking drug dealers if their cocaine comes from Venezuela or some other country. However, since the modifications to cocaine generally occur close to the point of production, and in any case do not differ much based on production location, it is unlikely that the immigrant’s utility from consuming the cocaine would differ much based on which country the cocaine was trafficked through.

Moreover, the overall demand for drugs by immigrants is disproportionately lower than for natives. I compare drug use between immigrants and native-born Spaniards and find that immigrants consume drugs at a substantially lower rate. Using the EDADES data introduced in Section 2.3 for the years 2005 through 2015, I find that 22% of respondents born outside of Spain have ever consumed cannabis, cocaine, heroin, or amphetamines compared to nearly
35% of native-born Spaniards.

4.2 Trade Costs

Immigrants may increase illegal trade in much the same way they can raise legal trade. Immigrant networks may reduce information and search frictions for trade between two locations, since trust may be greater within nationality and information travels more smoothly within nationality group (Gould, 1994; Felbermayr et al., 2015). Allen (2014), Chaney (2014), and Startz (2021) find that information frictions are a key driver of trade costs. These information frictions, such as the difficulty of a drug trader trying to source illegal drugs, are particularly challenging to overcome in the context of an illegal market.

Immigrant networks may also raise the cost of opportunistic or cheating behavior by firms within the nationality network, who can be punished for bad behavior by being shunned from business within the network (Rauch and Trindade, 2002). Additionally, the qualitative studies summarized in Section 2.1 demonstrate ways in which social connections between immigrants can facilitate trafficking by reducing trade costs.

If immigrant preferences drove the trafficking of drugs, then we would expect immigrants to increase imports of illegal drugs. However, I find that immigrants raise both illegal drug imports and exports. The rise in exports to the immigrants’ origin country therefore suggests that immigrants’ reduction of bilateral trade costs is more salient for explaining my results.

4.3 Past Exposure to Crime in Origin Country

Immigrants may be more likely to participate in crimes which were more prevalent in their origin country. For example, Couttenier et al. (2019) find that past exposure to conflict makes migrants more likely to commit violent crimes. To understand the degree to which origin country exposure to drug trafficking drives trafficking participation in the host country, I look at whether drugs being confiscated are more likely to be coming from countries that are hubs of drug trafficking. I measure a country’s drug hubness as the fraction of global drug confiscations emanating from the country (but not to Spain) between 2011 and 2016, and then take the ordinal rank. Data on global bilateral drug confiscations are taken from the UNODC dataset. One drawback of these data for countries other than Spain is that reporting drug confiscations to the UNODC occurs less frequently and is of lower quality (as discussed in Section 3.8). Nevertheless, no alternative data source on country-pair drug trafficking exists, so I pursue this analysis using these imperfect data.

I re-estimate equation 1, interacting the country-province immigrant log population with the drug-hub level of the immigrants’ origin country. I further interact the instruments with
the drug hubness rank.

In Table 5, I show the estimated coefficients. I find support for the hypothesis that immigrants’ propensity to be involved in trafficking is related to the prevalence of trafficking in their origin country. Origin countries which ship lots of illicit drugs to countries beyond Spain are more likely to have immigrants facilitate the export of drugs to Spain. Column 1 shows that as a country ranks higher on global illegal drug exports, the more likely are its migrants to facilitate drug imports to Spain. I also find that immigrants from drug hub countries facilitate the export of illegal drugs to their home country, as shown in column 2.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Imports</td>
<td>Exports</td>
</tr>
<tr>
<td>Log immigrants 2011</td>
<td>0.57</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Log immigrants 2011 × Drug hubness rank</td>
<td>-0.0011</td>
<td>-0.00037</td>
</tr>
<tr>
<td></td>
<td>(0.00026)</td>
<td>(0.00015)</td>
</tr>
</tbody>
</table>

Observations 5564 5564

Country FE Y Y
Province FE Y Y
Ln dist. Y Y
1st-stage F-statistic 34.7 34.7

Notes: The table presents instrumental variable regression estimates at the country-province level. The dependent variable is a dummy for whether any illegal drugs trafficked with country o were confiscated in province d between 2011 and 2016, separately for imports and exports. I modify equation 1 to include a term interacting $\log{\text{immigrants}}_{2011}$ with the ordinal rank of the fraction of confiscated drugs worldwide originating in the country. I instrument for $\log{\text{immigrants}}_{2011}$ using the IV defined in equation 2, the IVs interacted across decades and squared, and the full set of IVs interacted with the drug hub rank. All regressions control for country and province fixed effects as well as log distance. Standard errors are clustered at the country-level in parentheses.

While only suggestive, these results indicate that the characteristics of immigrants’ origin country, in particular their likelihood of exposure to drug trafficking, plays a role in their facilitating of drug trafficking in their destination country. These results are consistent with an immigrant’s comparative advantage in drug trafficking scaling with his likelihood of having observed trafficking in his home country.

5 Immigrant Legal Status and Trafficking

Thus far, I have shown evidence that immigrants increase drug trafficking from their origin country, and that this trafficking is driven by immigrants’ social connections and their ex-
posure to trafficking in their origin country. To better understand how immigration policy shapes illegal drug trafficking, I next explore how immigrants’ legal status affects the pattern and scale of drug trafficking.

Immigrants’ integration into labor markets and civil society may be hampered when they do not have legal status. This lack of access to the formal labor sector lowers the opportunity cost of crime for immigrants without legal status (Becker, 1968; Ehrlich, 1973). The lower opportunity cost may increase criminal activity among immigrants without legal status, as found empirically by Mastrobuoni and Pinotti (2015), Pinotti (2017), and Freedman et al. (2018), especially in financially motivated crime such as drug trafficking. To assess whether this intuition holds for drug trafficking, I estimate a gravity equation to test the effect of irregular immigrants (those without legal status) and regular immigrants on drug confiscations.

5.1 Measuring the Irregular Immigrant Population

Counting the number of immigrants without legal status can be challenging, as these immigrants are typically missed in standard administrative datasets (Warren and Passel, 1987; Borjas, 2017). Spain, however, offers unique institutional features which facilitate accurate tabulation of irregular immigrants. In particular, Spain has offered immigrants access to the public healthcare system regardless of one’s legal status since the passage of the 2000 Aliens Law (González-Enríquez, 2009).

I take advantage of this institutional feature to impute the number of irregular immigrants in Spain at the country-province-pair level. To do so, I take the difference between the number of persons appearing in the population registry of province \( d \) from origin country \( o \) and the number of persons with residency permits in province \( d \) from country \( o \). Specifically, I compute

\[
\text{Irregular Migrants}_{od} = \text{Population Registry Count}_{od} - \text{Residency Permits}_{od}
\]

and then divide by the total bilateral immigrant population to obtain the fraction of immigrants who have irregular status.\(^{33}\)

The population registry is an imperfect measure for several reasons. First, municipalities differ in their documentation requirements for registration and the degree to which they notify immigrants that they must re-register every two years. In addition, according to González-Enríquez (2009), sex workers and immigrants from China are less likely to register due to deportation fears. This measurement error in immigrant legal status may correlate to

\(^{33}\)For countries within the E.U., I set the number of irregular immigrants to 0.
drug trafficking. However, if the measurement error occurs for a specific nationality across Spain (say, for Chinese immigrants) or for all immigrants in a particular Spanish province (e.g., due to local registration practices), the country and province fixed effects will absorb variation in trafficking induced by such measurement error. Any residual measurement error at the country-province-pair level will bias the estimated coefficients toward zero so long as it is classical.

I impute the irregular immigrant population for set of the origin countries for which I observe bilateral population registry figures and bilateral residency permits in 2011 and the 52 Spanish provinces. I estimate that 20% of immigrants living in Spain are irregular, in line with the estimate from González-Enríquez (2009).

5.2 Gravity Estimation by Legal Status

To explore whether immigrant legal status can explain the connection I find between immigrants and drug trafficking, I modify my baseline specification to include two separate terms for the bilateral immigrant population in 2011 by regular ($M^{reg}_{o,d}$) and irregular ($M^{irreg}_{o,d}$) status:

$$Y_{o,d} = \alpha_o + \alpha_d + \beta_{irreg}M^{irreg}_{o,d} + \beta_{reg}M^{reg}_{o,d} + \zeta \ln(Dist_{o,d}) + \varepsilon_{o,d}$$

(5)

where, as in equation 1, $Y_{o,d}$ is a dummy for any drugs trafficked between $o$ and $d$ were confiscated by Spanish authorities, estimated separately for import and export confiscations. Thus $\beta_{irreg}$ is the effect of irregular immigrants on trafficking and $\beta_{reg}$ is the effect of regular immigrants on trafficking.

Separating immigrants by legal status introduces another endogeneity issue—differential selection of immigrants into legal status and trafficking—which the baseline leave-out push-pull instrument defined in equation 2 may not sufficiently address. For example, some immigrants with a higher taste for risk may be more likely to lack legal status and participate in illegal drug trafficking. To the extent that this selection is common across provinces for a given nationality, the country fixed effect $\alpha_o$ will absorb such selection. Similarly, if the characteristic is common across immigrants of all nationalities in a given province, the province fixed effect $\alpha_d$ will absorb this common preference for risk-taking.

To address province-country-specific selection into irregularity and drug trafficking, I modify the leave-out push-pull instrument predicting total immigrant inflows to predict immigrant inflows by legal status. In particular, I define the legal status-specific leave-out push-pull instrument as:
IV_{o,d}^{D,L} = m_{o,d}^L \times IV_{o,d}^D \quad (6)

for \( L \in \{\text{regular, irregular}\} \) and decade \( D \), where \( IV_{o,d}^D \) is the baseline leave-out push-pull from equation 2 and \( m_{o,d}^L = \frac{\text{immigrants}_{o-a(d)}^{2001,L}}{\text{immigrants}_{o-a(d)}^{2001}} \) is the fraction of immigrants with legal status \( L \) from country \( o \) who live outside the autonomous community of province \( d \) back in 2001. I use 2001 as the base year as it was the first year in which irregular immigrants were incentivized to enroll in their local population registry in order to qualify for public health care due to the passage of the 2000 Aliens Law (González-Enríquez, 2009). The instrument interacts variation across three dimensions: (i) immigration from various origin countries, (ii) immigration to various Spanish provinces, and (iii) the propensity of immigrants to have legal status \( L \) at the country-province level.

The identification assumption is that there are no confounders at the country-province level which are persistent from 2001 to 2011 and present in both province \( d \) and another province outside \( d \)'s autonomous community and which drive selection of immigrants into both irregular status and drug trafficking. For example, suppose we want to predict the fraction of irregular Moroccan immigrants living in Barcelona in 2011. \( m_{o,d}^L \) uses information on the legal status of Moroccan immigrants outside Catalonia (the autonomous community of Barcelona) back in 2001 to predict the 2011 legal status of Moroccans in Barcelona. The exclusion restriction is violated if, say, Moroccans in Madrid in 2001 were driven into irregularity and drug trafficking by the same confounder (e.g., a preference for risk-taking) that drove Moroccans in Barcelona in 2011 into irregularity and trafficking. This endogeneity will meaningfully affect the estimation if a non-trivial share of Moroccans outside Catalonia live in Madrid in 2001 and the confounder acts disproportionately on Moroccans in Madrid moreso than on Moroccans elsewhere (i.e., it is not absorbed by the Moroccan fixed effect).

I show the results of estimating equation 5 in Table 6. The coefficient on irregular immigrants is 0.27 (SE=0.06), which is substantially larger than the coefficient of 0.07 (SE=0.06) for regular immigrants. Moreover, the effect of regular immigrants on illegal trafficking is statistically insignificant. The effect of irregular immigrants implies that a 10\% increase in the bilateral irregular immigrant population raises the likelihood of an illegal drug import confiscation by 0.5 percentage points.\(^{34}\) I also find that regular immigrants increase illegal drug exports, while irregular immigrants reduce them, as shown in column 2 of Table 6.\(^{35}\)

The import results are therefore consistent with the Becker-Ehrlich model of crime: im-

\(^{34}\)Using \( \hat{\beta}_{\text{Irreg}} = 0.271 \) from column 1 and mean value of bilateral irregular immigrant population of 204, I find that \( \left[ C_{o,d}^{2011-2016} > 0|M_{o,d}^{2011} = 204 \right] = 0.271 \left( \ln \left( 1 + \frac{204 \times 11}{1000} \right) - \ln \left( 1 + \frac{204}{1000} \right) \right) \approx 0.0046 \). The regular and irregular coefficients are statistically different at the 10\% level.

\(^{35}\)The coefficients on exports for regular and irregular migrants are statistically different at the 1\% level.
Table 6: Effect of Immigrants by Legal Status on Drug Confiscations

<table>
<thead>
<tr>
<th>Dummy for Any Drug Confiscations</th>
<th>Imports</th>
<th>Exports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log regular immigrants 2011</td>
<td>0.0661</td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>(0.0584)</td>
<td>(0.0330)</td>
</tr>
<tr>
<td>Log irregular immigrants 2011</td>
<td>0.271</td>
<td>-0.169</td>
</tr>
<tr>
<td></td>
<td>(0.0614)</td>
<td>(0.0416)</td>
</tr>
<tr>
<td>Observations</td>
<td>5252</td>
<td>5252</td>
</tr>
<tr>
<td>SW 1st-stg. F-stat. (regular immigrants)</td>
<td>34.4</td>
<td>34.4</td>
</tr>
<tr>
<td>SW 1st-stg. F-stat. (irregular immigrants)</td>
<td>44.3</td>
<td>44.3</td>
</tr>
</tbody>
</table>

Notes: The table presents estimates of IV regressions by legal status at the country-province level. The dependent variable is a dummy for whether any confiscation occurred, separately for imports (column 1) and exports (column 2). I instrument for the immigrant population by legal status using equation 6 as well as the interaction across decades and squared terms. SW F-statistics refer to those described by (Sanderson and Windmeijer, 2016). Standard errors are clustered by country.

migrants with worse labor market opportunities due to their legal status are more likely to facilitate illegal drug trafficking. However, the results for exports are puzzling when interpreted through the lens of the Becker-Ehrlich model of crime.

Instead, I point to E.U.-specific institutions governing migration and trade. First, I note that the primary export destinations of drugs leaving Spain are other European Union member states (see Figure D.6). Immigrants from E.U. countries cannot be irregular in Spain, and therefore regular immigrants necessarily will play a larger role in facilitating exports out of Spain and into Europe. Second, much of the within-Europe trafficking is conducted by small wholesale distribution companies with fleets of trucks. Taking advantage of the E.U.’s borderless environment facilitates the flow of illegal goods as much as it does legal goods.\textsuperscript{36} Such companies are much more likely to be owned and operated by someone with legal status, either a native or regular immigrant. While the negative coefficient on irregular immigrants in column 2 is surprising, it may be a result of the fact that there are few irregular immigrants from the top non-E.U. export destinations (e.g., Turkey) while those countries with many irregular immigrants in Spain typically only send drugs to Spain but rarely receive any exports (e.g., Latin America and Morocco). These results suggest immigrant legal status is an important factor shaping immigrants’ role in drug trafficking.

\textsuperscript{36}Fukumi (2008) notes that “the introduction of the Schengen Agreement in 1985, and the full implementation of the Schengen Treaty in 1995 opened a window of opportunity to cocaine traffickers because it enabled free movement within a major part of Western Europe.” (p. 50) She further argues that drug traffickers often launder money by buying import and export companies, commodity trading businesses, and cargo businesses, which are all useful in transporting illegal drugs (p. 54).
6 Conclusion

The effect of immigration on crime has long been a controversial political issue. In this paper, I contribute to this debate by causally estimating the effect of immigrants and immigrant legal status on international illegal drug trafficking. I find that an increase in the number of international immigrants increases international drug trafficking, both on the import and export margin. Three mechanisms drive these effects: immigrants’ social connections with their origin country, immigrants’ exposure in their origin country to drug trafficking, and immigrants’ legal labor market opportunities, as proxied for by their legal status. I find that granting immigrants legal status can reduce illegal drug imports.

The results presented here have significant relevance to ongoing debates on immigration policy in the United States and around the world. In particular, as many European countries and the United States discuss providing some form of amnesty and a path to citizenship to their large populations of unauthorized immigrants, this paper offers an additional potential benefit to society from such amnesties. Providing amnesty may be cheaper to administer than attempting to keep irregular immigrants from entering the country, such as by building a wall. For example, Allen et al. (2018) estimate that the 2007–2010 expansion of the border wall on the U.S.-Mexico border cost approximately $57,500 per deterred immigrant.

An important caveat is that immigrants generate a range of effects on their host countries, from native-born wages to innovation to consumer choice. Hence, generalizing welfare effects of immigration from just one outcome, as is the subject of the present study, may lead to suboptimal policy choices. Instead, policymakers must weigh the varied impacts of migration when crafting immigration policy.

References


Tinbergen, J. (1962). *Shaping the world economy; Suggestions for an international economic policy*. The Twentieth Century Fund.


A Data Appendix

As discussed in Section 2.2, I draw the data on drug confiscations from the United Nations Office of Drugs and Crime (UNODC). For my baseline estimation, I use data on confiscations from Spain, which reports high-quality drugs data. However, in some exercises (Sections 3.8 and 4.3) I utilize data from all countries in the dataset. I next describe in greater detail the UNODC data and the data cleaning procedures I apply.

Drug Groupings. The UNODC data on drug confiscations are reported in a variety of unit amounts and drug types. In the empirical analysis, I focus on the two primary drug groups trafficking in Spain: cannabis and cocaine. In the worldwide analysis of Section 3.8, I also include heroin and amphetamines. Because drug confiscations are reported for a variety of drug types, I condense these types into aggregated groupings according to Table A.1.

Comparability of Confiscation Amounts. Comparing confiscated amounts even within drug groupings is challenging due to their imperfect substitution. For example, opium and heroin are two distinct drugs with different street prices. To make confiscations comparable across drug types and the reported unit of seizures, I proceed in three steps. First, I translate all units into kilograms. Second, I apply a deflation term to the imputed kilograms depending on what stage in the production chain the drug type is (e.g., cocaine base is an input into consumable cocaine). Third, I convert the kilogram measure into a dollar value using a Spanish survey of drug prices reported by the UNODC.

The first step, translating units into kilograms, is straightforward when a mass or weight unit is provided. When a mass value is not provided (e.g., I see the number of capsules or liters of a confiscation), I turn to United Nations and scientific papers on the estimated average conversion rates between different units of drugs and their consumption-grade equivalent in kilograms. Following the UNODC (p. 39, 2017), I convert 1 liter into 1 kilogram for all drugs, and a cannabis plant into 100 grams. For amphetamines and methamphetamines, I apply conversion rates summarized in Table A.2.

Additionally, I convert drugs higher up the supply chain—i.e., inputs into final consumable drugs—into an equivalent amount of the drug lower down the supply chain. For example, heroin is derived from opium poppies, with about 9.6 kg of opium producing 1 kg of heroin (UNODC and Afghan Ministry of Counter Narcotics, 2015). I therefore convert opium poppies into their heroin equivalent. I also convert morphine base into heroin, following Figure
Table A.1: Author’s Drug Groupings

<table>
<thead>
<tr>
<th>Drug Group (Analysis Data)</th>
<th>Drug Type (Raw Data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabis</td>
<td>Cannabis</td>
</tr>
<tr>
<td></td>
<td>Cannabis herb (Marijuana)</td>
</tr>
<tr>
<td></td>
<td>Cannabis leaves</td>
</tr>
<tr>
<td></td>
<td>Cannabis oil</td>
</tr>
<tr>
<td></td>
<td>Cannabis plants</td>
</tr>
<tr>
<td></td>
<td>Cannabis pollen</td>
</tr>
<tr>
<td></td>
<td>Cannabis sativa</td>
</tr>
<tr>
<td></td>
<td>Cannabis resin</td>
</tr>
<tr>
<td></td>
<td>Cannabis seeds</td>
</tr>
<tr>
<td>Cocaine</td>
<td>Cocaine</td>
</tr>
<tr>
<td></td>
<td>Coca plant</td>
</tr>
<tr>
<td></td>
<td>Coca seeds</td>
</tr>
<tr>
<td></td>
<td>Coca leaf</td>
</tr>
<tr>
<td></td>
<td>Coca paste</td>
</tr>
<tr>
<td></td>
<td>Cocaine base</td>
</tr>
<tr>
<td></td>
<td>Cocaine HCL</td>
</tr>
<tr>
<td>Heroin</td>
<td>Heroin</td>
</tr>
<tr>
<td></td>
<td>Heroin base</td>
</tr>
<tr>
<td></td>
<td>Extract from Opium poppy</td>
</tr>
<tr>
<td></td>
<td>Morphine</td>
</tr>
<tr>
<td></td>
<td>Opium</td>
</tr>
<tr>
<td></td>
<td>Acetylated Opium</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>Amphetamine</td>
</tr>
<tr>
<td></td>
<td>Liquid methamphetamine</td>
</tr>
<tr>
<td></td>
<td>Methamphetamine</td>
</tr>
</tbody>
</table>

Notes: The table describes how I group drug types within the UNODC data.

II of Zerell et al. (2005), which states that 7.8 kg of morphine base can be converted into 3.9 kg of white heroin.

Cleaning the Geography of Confiscations. The UNODC data provides data on the “Place” of the confiscation, which may refer to the province or municipio. Within Spain, I match municipios to their province using the IPUMS crosswalk between regions. I drop municipios that I cannot match to a Spanish province, either because of some typos in the municipio name or because the place name does not correspond to a province (e.g., international waters).

How Spain Fills in the UNODC Data. Spain’s Centro de Inteligencia contra el Terrorismo y el Crimen Organizado (CITCO) sends information on individual drug confiscations reg-
Table A.2: Drug Conversion Rates for Amphetamines and Methamphetamines (doses to milligrams)

<table>
<thead>
<tr>
<th>Region</th>
<th>Dose</th>
<th>Milligrams</th>
<th>Amphetamine</th>
<th>Methamphetamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>1</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Asia (excluding Middle East/Southwest Asia)</td>
<td>1</td>
<td>250</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>1</td>
<td>253</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Central and South America and Caribbean</td>
<td>1</td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Middle East/Southwest Asia</td>
<td>1</td>
<td>170</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>1</td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Oceania</td>
<td>1</td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table displays conversion rates of individual tablets, pills, capsules, or doses into milligrams following the table from page 38 of UNODC (2017). For example, confiscations of a single dose of amphetamines or methamphetamines in Africa are converted into 250mg. Particularly to the UNODC. These data are assembled by the Sistema Estadístico de Análisis y Evaluación sobre Crimen Organizado y Drogas (SENDA), using information furnished by the Policía Nacional, Guardia Civil, and the Departamento de Aduanas e Impuestos Especiales. However, drug confiscations conducted by local or municipio police are also included so long as they are reported to the National Police or Guardia Civil as drug trafficking crimes.

As discussed in Section 2.2, attribution of drugs to their origin and destination is done via investigation following confiscations, covering a range of evidence seized (e.g., persons detained and any relevant documentation). For example, for drugs confiscated from cargo ship containers, a range of documents are checked for country of origin and intended destination, including the bill of lading, the commercial invoice, the certificate of origin, customs clearance forms, and the relevant letter of credit. While investigations are conducted after every confiscation event, boats with hashish resin intercepted in the Strait of Gibraltar or on the Andalusian coast are assumed to come from Morocco unless proven otherwise.

Comparison of UNODC Data Across Countries. In my baseline analysis I focus on the country of Spain due to its higher quality reporting of illegal drug confiscations to the UNODC. I graphically depict Spain’s superior data reporting in Figure A.1. The figure plots the number of reported confiscations against the fraction of those confiscations in which I can identify the sub-national geography in which the confiscation took place, conditional on the confiscation reporting either an origin or intended destination country. It shows that Spain reports an unusually high number of confiscations in which the country of trafficking origin is reported (vertical axis). Moreover, Spain almost always reports the location within Spain in which the confiscation occurred (horizontal axis). Combined, these two dimensions
of data quality make Spain an outlier within the UNODC data on individual drug seizures.

![Figure A.1: Data Quality Across Countries](image)

**Notes:** The chart plots the relationship between the number of confiscations reported to the United Nations Office of Drugs and Crime across all years with information on the sending country and the fraction of those confiscations with information on the sub-national region of the confiscation across countries. Sample is restricted to confiscations with information on either the departure or intended destination country.

## B Instrumental Variable: Additional Discussion

In my baseline estimation, I instrument for the immigrant population using two decades of predicted immigrant inflows generated by a leave-out push-pull IV, defined in equation 2. Because the instrument leverages variation at the country and province level, and I have both country and province fixed effects, one may be concerned about what residual variation the IV captures. To better understand the variation generated by the IV conditional on $o$ and $d$ fixed effects, I first explore its residual variation after controlling for the set of fixed effects using the simple, non-leave-out version of the instrument (where I drop the decade superscript for notational clarity):

$$\widetilde{IV}_{o,d} = I_o \times \frac{I_d}{T}$$  \hspace{1cm} (B.1)

Controlling for $o$ and $d$ fixed effects, the residual variation of B.1 become
\[ \hat{IV}_{od} = I_o \times \frac{I_d}{T} - \frac{1}{n_o} \sum_o I_o \times \frac{I_d}{T} - \frac{1}{n_d} \sum_d I_o \times \frac{I_d}{T} \]

\[ = I_o^D \times \frac{I_d}{T} - \frac{I_d}{n_o - n_d} \]

where \( n_d \) is the number of Spanish provinces and \( n_o \) is the number of countries.

Therefore the push-pull IV predicts the bilateral immigrant flows by interacting the number of immigrants pushed out of \( o \) with the fraction of immigrants pulled into \( d \), net of the average number of immigrants from \( o \) per Spanish province (\( I_d/n_o \)) and the average number of immigrants in \( d \) per origin country (\( I_o/n_d \)).

For example, if we want to predict the number of Moroccans going to Barcelona, I would interact the number of Moroccans coming to Spain (\( I_{Morocco} \)) with the fraction of immigrants across all origin countries coming to Spain who choose to live in Barcelona (\( I_{Barcelona}/I \)) net of the average number of immigrants in Barcelona per origin country (\( I_{Barcelona}/107 \)) and the average number of Moroccans per Spanish province (\( I_{Morocco}/52 \)). Note that as the number of geographic units (countries or provinces) grows, the fraction of the residual variation of the instrument made up by the push-pull interaction term grows. This holds so long as total immigration to Spain grows at a smaller rate than the number of provinces and countries do. Therefore, the instrument net of the fixed effects asymptotically approaches the baseline instrument of equation B.1: \( \lim_{n_o \to \infty, n_d \to \infty} \hat{IV}_{o,d} = \hat{IV}_{o,d} \).

Next, I consider how the above logic applies to the case of my baseline leave-out push-pull instrument. Netting out the provincial mean and country mean from equation 2, I obtain:

\[ IV_{od} = I_{o,-a(d)} \times \frac{I_{c(o),d} - \sum_o I_{o,-a(d)} \times I_{c(o),d}}{T_{c(o)}} - \frac{1}{n_o} \sum_o I_{o,-a(d)} \times \frac{I_{c(o),d} - \sum_o I_{o,-a(d)} \times I_{c(o),d}}{T_{c(o)}} \]

\[ = I_{o,-a(d)} \times \frac{I_{c(o),d}}{T_{c(o)}} - \frac{1}{n_o} \sum_o \left( I_o - I_{o,a(d)} \right) \times \frac{I_d - I_{c(o),d}}{T - I_{c(o)}} - \frac{1}{n_d} \sum_d (I_o - I_{o,a(d)}) \times \frac{I_d - I_{c(o),d}}{T - I_{c(o)}} \]

\[ = I_{o,-a(d)} \times \frac{I_{c(o),d}}{T_{c(o)}} - \frac{I_d}{n_o} \sum_o \left( I_0 - I_{o,a(d)} \right) \times \frac{I_d - I_{c(o),d}}{T - I_{c(o)}} - \frac{1}{n_o} \sum_o \left( I_0 - I_{o,a(d)} \right) \times \frac{I_d - I_{c(o),d}}{T - I_{c(o)}} + \frac{1}{n_d} \sum_d \left( I_0 - I_{o,a(d)} \right) \times \frac{I_d - I_{c(o),d}}{T - I_{c(o)}} \]

\[ = I_{o,-a(d)} \times \frac{I_{c(o),d}}{T_{c(o)}} - \frac{I_d}{n_o} \sum_o \left( I_0 - I_{o,a(d)} \right) \times \frac{I_d - I_{c(o),d}}{T - I_{c(o)}} - \frac{1}{n_o} \sum_o \left( I_0 - I_{o,a(d)} \right) \times \frac{I_d - I_{c(o),d}}{T - I_{c(o)}} + \frac{1}{n_d} \sum_d \left( I_0 - I_{o,a(d)} \right) \times \frac{I_d - I_{c(o),d}}{T - I_{c(o)}} \]

In my baseline estimation I use all 52 Spanish provinces and 102 countries, with an additional country group per continent. Therefore, any increase in the number of immigrant destinations \( d \) or origins \( o \) will not increase total immigration to Spain, \( I^D \). Therefore the same asymptotic logic applies whereby a larger number of origin and destination regions lead to a larger proportion of the residual variation in the instrument to come from the push-pull interaction term, i.e., \( \lim_{n_o \to \infty, n_d \to \infty} IV_{o,d} = IV_{o,d} \).
C Empirical Appendix

C.1 Standard Errors

In my baseline specification, I cluster standard errors at the country level. To test whether my results are robust to alternative standard error clustering, including two-way clustering, I re-estimate my baseline specification using various clustering geographies. Table C.1 shows these estimates, which remain statistically significant across the different clustering geographies for imports and exports. Moreover, the clustering geography used in my baseline estimation, country-level, produces the largest standard errors.

<table>
<thead>
<tr>
<th></th>
<th>(1) Imports (dummy)</th>
<th>(2) Exports (dummy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log immigrants 2011</td>
<td>0.176</td>
<td>0.0625</td>
</tr>
<tr>
<td>Cluster by country</td>
<td>(0.0448)</td>
<td>(0.0347)</td>
</tr>
<tr>
<td>Heteroskedasticity Robust</td>
<td>(0.0237)</td>
<td>(0.0277)</td>
</tr>
<tr>
<td>Cluster by province</td>
<td>(0.0226)</td>
<td>(0.0245)</td>
</tr>
<tr>
<td>2-way cluster by country &amp; province</td>
<td>(0.0442)</td>
<td>(0.0321)</td>
</tr>
</tbody>
</table>

Notes: The table presents coefficient estimates and various standard errors from IV regressions of equation 1 at the country-province level. I control for nationality and province fixed effects as well as log distance. Log immigrants 2011 is instrumented with the leave-out push-pull IV from equation 2. I cluster by country in my baseline specification.

C.2 Relaxing Functional Form Assumption

In my baseline gravity specification, equation 1, I measure the endogenous variable of interest as the log of one plus the number of immigrants measured in thousands: \( \ln \left(1 + \frac{\# \text{migrants}^{2011}}{1000}\right) \). In this subsection, I first motivate my choice of functional form, and then show that my baseline results are insensitive to alternative functional form choices.

I motivate my choice of a log-functional form with the binscatter plot in Figure C.1 of the relationship between the immigrant population and a dummy variable for whether any import confiscation occurs at the country-province level.
Figure C.1: Relationship between Import Confiscation Dummy and Immigrant Population

Notes: The figure shows the binscatter plot between the immigrant population in 2011 and a dummy variable for whether any import confiscation occurred between 2011 and 2016 at the country-province-pair level. For visual clarity, I drop the highest quantile, which in any case does not change the figure’s log curvature.

Next, I relax the functional form assumption of my baseline specification that \( \pi = \frac{1}{1000} \) for the independent variable \( \ln(1 + \pi \times \# migrants_{o,d}^{2011}) \). To do so, I estimate \( \pi \) in my baseline specification using nonlinear Generalized Method of Moments. Specifically, I simultaneously estimate the two baseline gravity equations for imports and exports,

\[
\begin{align*}
1 \left[ C_{o,d}^{2011-2016} > 0 \right] & = \alpha_o^{\text{Import}} + \alpha_d^{\text{Import}} + \beta^{\text{Import}} \ln(1 + \pi \times \# migrants_{o,d}^{2011}) + \delta^{\text{Import}} \ln(Dist_{o,d}) + \epsilon_{o,d}^{\text{Import}} \\
1 \left[ C_{d,o}^{2011-2016} > 0 \right] & = \alpha_o^{\text{Export}} + \alpha_d^{\text{Export}} + \beta^{\text{Export}} \ln(1 + \pi \times \# migrants_{o,d}^{2011}) + \delta^{\text{Export}} \ln(Dist_{o,d}) + \epsilon_{o,d}^{\text{Export}}
\end{align*}
\]

with moment conditions

\[
E \left[ Z_{o,d} \times (Y_{o,d} - \alpha_o - \alpha_d - \beta \ln(\pi \times \# migrants_{o,d}^{2011} + 1) - \delta \ln(Dist_{o,d})) \right] = 0 \quad (C.2)
\]

\[
E \left[ \begin{pmatrix} \alpha_o \\ \alpha_d \end{pmatrix} \times (Y_{o,d} - \alpha_o - \alpha_d - \beta \ln(\pi \times \# migrants_{o,d}^{2011} + 1) - \delta \ln(Dist_{o,d})) \right] = 0 \quad (C.3)
\]

for dependent variable \( Y_{o,d} = (1 \left[ C_{o,d}^{2011-2016} > 0 \right], 1 \left[ C_{d,o}^{2011-2016} > 0 \right])' \), fixed effects \( \alpha_i = \)
\((\alpha_i^{\text{Import}}, \alpha_i^{\text{Export}}),\) parameters \(\beta = (\beta^{\text{Import}}, \beta^{\text{Export}})\) and \(\delta = (\delta^{\text{Import}}, \delta^{\text{Export}})\), and excluded instrument set \(Z_{o,d}\) as in my baseline estimation (i.e., column 4 of Table 1).

Table C.2 shows the results. My estimate of \(\pi\) includes within the 95\% confidence interval my baseline functional form assumption of \(\pi = \frac{1}{1000}\) and rejects the more conventional functional form choice \(\pi = 1\). In addition, the estimates of \((\beta_1, \beta_2)\) also are statistically indistinguishable from my baseline coefficient estimates.

Table C.2: Effect of Immigrants on Drug Confiscations (GMM)

| Drug Smuggling | \(\beta^{\text{Import}}\) | 0.246 | (0.06) |
|               | \(\pi\)                 | 0.032 | (0.028) |
|               | \(\beta^{\text{Export}}\) | 0.071 | (0.058) |
| Observations  |                        | 5564  |        |

Notes: The table presents coefficient estimates from nonlinear GMM estimation of moments described in equations C.2 and C.3. Standard errors are clustered at the country level.

Finally, I estimate my baseline specification across various alternative functional forms for the number of immigrants. I show the results in Table C.3. Across functional forms, more immigrants tend to lead to more drug confiscations as I find in my baseline estimates.

C.3 Alternative Instrumental Variables

I next test the robustness of my baseline results to different choices of instrumental variables.

To assess whether a particular decade of immigration drives my results, I re-estimate the baseline with different subsets of the push-pull instrument in Panel A of Table C.4. I do so using only the instrument for immigrant inflows in the 1990s (the first row) and the 2000s (the second row), where each cell refers to a separate regression. In addition, I estimate my baseline without the higher-order interaction terms between the instruments in the third row of Panel A. Across all these regressions, I find that the immigrant population induces an increase in both imports and exports of illegal drugs. Differences across specifications in coefficient magnitudes are statistically insignificant.
<table>
<thead>
<tr>
<th>Table C.3: Robustness to Different Functional Forms</th>
<th>Any confiscation (2011–2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Import</td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td></td>
</tr>
<tr>
<td>Import</td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td></td>
</tr>
<tr>
<td>Log immigrant population (2001)</td>
<td>0.221</td>
</tr>
<tr>
<td></td>
<td>(0.0598)</td>
</tr>
<tr>
<td>( \ln \left( \frac{M_{2011}^{o,d}}{1000} \right) ) (-1 for ( \infty ))</td>
<td>0.127</td>
</tr>
<tr>
<td></td>
<td>(0.0281)</td>
</tr>
<tr>
<td>( (M_{2011}^{o,d})^{1/3} )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0245</td>
</tr>
<tr>
<td></td>
<td>(0.00768)</td>
</tr>
<tr>
<td>Observations</td>
<td>5564</td>
</tr>
<tr>
<td>Country FE</td>
<td>Y</td>
</tr>
<tr>
<td>Province FE</td>
<td>Y</td>
</tr>
<tr>
<td>Ln dist</td>
<td>Y</td>
</tr>
<tr>
<td>1st-stage F-statistic</td>
<td>290.2</td>
</tr>
</tbody>
</table>

Notes: The table presents coefficient estimates from IV regressions at the country-province level using different functional forms to measure bilateral immigrant population. The instrument for the immigrant population measure with \( \{ IV_{o,d} = I_{o-d}^{d} \times I_{d-c(o),d}^{c(o)} \}_{1991-2001,2001-2011} \), their interaction across decades, and squared terms. The dependent variable is a dummy for whether any drugs trafficked between country \( o \) and province \( d \) were confiscated between 2011 and 2016 (separately for imports or exports). All regressions control for province and country fixed effects as well as log distance. Standard errors are clustered at the country level.
Table C.4: Varying the Instrumental Variable

<table>
<thead>
<tr>
<th>PANEL A: Using subsets of instruments</th>
<th>Import confiscations (Dummy)</th>
<th>Export confiscations (Dummy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only immigration 1991–2001</td>
<td>0.165***</td>
<td>0.095*</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>Only immigration 2001–2011</td>
<td>0.104</td>
<td>0.079**</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>Immigration 1991–2001, without squared and interaction terms</td>
<td>0.129**</td>
<td>0.085**</td>
</tr>
<tr>
<td></td>
<td>(0.061)</td>
<td>(0.042)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PANEL B: variations of leave-out categories</th>
<th>Import confiscations (Dummy)</th>
<th>Export confiscations (Dummy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excluding origins with correlated 2011 immigrant pop.: $I_{o,-r(d)} \times (I_{-corr(o),d}/I_{-corr(o)})$</td>
<td>0.214***</td>
<td>0.095**</td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Excluding provinces with correlated 2011 immigrant pop.: $I_{o,-corr(d)} \times (I_{-c(o),d}/I_{-c(o)})$</td>
<td>0.099***</td>
<td>0.095*</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.052)</td>
</tr>
</tbody>
</table>

Notes: The table presents coefficient estimates from instrumental variable regressions of equation 1, where each cell presents the coefficient on Log immigrants 2011 from separate regressions. Panel A shows subsets of instruments relative to my baseline instrument set. Panel B shows alternative formulations of the baseline instrumental variable. In particular, I exclude from the pull factor countries with correlated immigrant populations across all Spanish provinces (in the first row of Panel B); and from the push factor, provinces with correlated immigrant populations across all origins (second row). For a region to be excluded due to correlation, the correlation coefficient must be greater than 0.5 with a p-value lower than 0.05. Standard errors are clustered at the country level.
A remaining concern in the identification strategy is that some factor may still directly affect drug trafficking in two different provinces across different autonomous communities, while simultaneously driving disproportionate numbers of immigrants from two countries from different continents to the same Spanish provinces across different autonomous communities (e.g., the Lebanon–Morocco and Alicante–Barcelona example from Section 3.3). If such a confounder was affecting the baseline results, one would expect that excluding countries or provinces with correlated migration flows would significantly change the results.\textsuperscript{37} In Panel B of Table C.4, I show that they do not.

In particular, I classify two origin countries as having correlated immigrant populations if, across Spain’s 52 provinces, they have a correlation coefficient greater than 0.5 with a p-value less than 0.05. I then drop any correlated origins from the pull factor $I_{corr(o),d}^{I_{corr(o)}}$ of the push-pull instrument. This procedure drops sixty-three origin countries on average, with an average of seventeen from the same continent (the baseline leave-out group). In the first row of Panel B, I show the results for the baseline gravity specification (equation 1) when using this alternative instrument. The coefficients are statistically indistinguishable from those estimated in the baseline.

Similarly, in the second row of Panel B, I exclude from the push component provinces with immigrant populations that correlate with province $d$ across all origin countries. This drops on average 36 provinces, with an average of 5 within the same autonomous community (the baseline leave-out geography). Again, the coefficients are statistically indistinguishable from my baseline results.\textsuperscript{38} I conclude from these two exercises that the baseline leave-out categories already well exclude confounding variation from the instrument.

### C.4 Testing Instrument Exogeneity

Recent work on identification using shift-share instrumental variables has emphasized that shift-share instruments should be uncorrelated with exogenous, predetermined characteristics (Goldsmith-Pinkham et al., 2020; Borusyak et al., 2022). While the leave-out push-pull instrument used in this paper does not precisely match a canonical shift-share instrument, the logic still holds that the push-pull IV should be uncorrelated with exogenous characteristics.

\textsuperscript{37}Note that many countries/provinces may have correlated migration flows for reasons completely benign for my identification strategy. For example, changes in Spanish immigration policies or in transportation infrastructure may affect the push factors for several countries on different continents without affecting illegal drug trafficking. To the extent that most or all of this intercountry immigration correlation is driven by such innocuous forces, there is no a priori reason to exclude countries or provinces with correlated immigration flows from the construction of the instrument.

\textsuperscript{38}These exercises follow Table 5 of Burchardi et al. (2019).
at the country-province pair level. Hence, I regress the instrument from each decade on the log distance, the only predetermined variable available at the country-province pair level.

As shown in Table C.5, I find no relationship between the instruments and log distance. Since the leave-out structure ensures that country-province pair specific immigration—as well as neighboring immigration flows—are not used in the instrument, this should not be surprising, though still reassuring that the instrument are not capturing pre-existing bilateral characteristics. For example, Moroccans tend to settle on Spain’s southern coast, the provinces in closest proximity to Morocco. The leave-out push-pull instrument will, however, predict Moroccan immigration to those southern provinces from immigration from Europe, Asia, the Americas, and Oceania, origins with widely varying distances to southern Spain.

Table C.5: Relationship between Instruments and Log Distance

<table>
<thead>
<tr>
<th>Dep. Var.: Leave-out Push-Pull IV</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991-2001</td>
<td>0.0267</td>
<td>0.0216</td>
</tr>
<tr>
<td></td>
<td>(0.0321)</td>
<td>(0.0609)</td>
</tr>
<tr>
<td>Observations</td>
<td>5564</td>
<td>5564</td>
</tr>
<tr>
<td>Country FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Province FE</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Notes: The table presents estimates OLS regressions of the leave-out push-pull IV (defined in equation 2) on the log distance between Spanish province and origin country. Data are at the country-province level. The dependent variable is the leave-out push-pull IV for the 1991-2001 decade in column 1, and for the 2001-2011 decade in column 2. Standard errors are clustered by country.

C.5 Heterogeneity by Country, Province, and Drug

Drug trafficking into Spain is primarily driven by a select few countries—Morocco, for example, is the dominant exporter of cannabis to Spain. To see whether any single country or province drives my baseline results, I re-estimate my baseline gravity specification separately leaving out each province and each country, for a total of 159 regressions. Figure C.2 shows the distribution of $\beta$ estimates from equation 1 when dropping a single country per regression (top row) or a single province (bottom row), with imports on the left and exports on the right.

---

$^{39}$A shift-share instrument typically interacts an initial share with a change over time, summed across one dimension. The push-pull instrument has two differences from this canonical formulation. First, the push-pull IV stops short of summing across any dimension, retaining both dimensions of variation. Second, the “share” component of the push-pull IV (equivalent to the “pull” component) is not lagged, as in the canonical shift-share immigration instrument, but rather computed for the same time period with a leave-out structure.
right. I estimate a positive $\beta$ regardless of which region I drop from the sample, suggesting that no single country (including Morocco) or province drives my baseline results.

Figure C.2: Effect of Immigrants on Drug Trafficking: Dropping Countries, Provinces One at a Time

Notes: The figures show the distribution of the estimated effect of immigrants on illegal drug confiscations ($\beta$ from equation 1) when leaving out one nationality (in the top row) or province (bottom row) for each regression. The figures show the distribution of $\beta$s when the dependent variable of equation 1 is a dummy for whether any drug trafficking (imports on the left and exports on the right) with a given origin country was confiscated locally between 2011 and 2016.

Moreover, the maximal standard error for the excluded country import regressions (top left) is 0.049, meaning all estimated coefficients are statistically significant as well. For exports (top right), all coefficients are positive and all but four coefficients are statistically significant at the 10% level or lower. Similarly for leaving out one province at a time (bottom row), import coefficients are always statistically significant. Export coefficients when leaving one province out at a time are statistically significant at the 10% level or lower for all but one regression.

I also explore the heterogeneity of the effect of immigrants on drug trafficking across individual countries and Spanish provinces. In Figure C.3, I plot coefficients of the immigrant population’s effect on imports (left column) and exports (right column) across provinces (bottom) and countries (top). The red curve displays the threshold for statistical significance at the 10% level, with circle size corresponding to province population or immigrant
nationality population. I find that nearly all individual provinces and countries exhibit a positive effect of immigrants on illegal trafficking, with most coefficients being statistically significant. However, given that each province regression is identified from 107 observations and each country regression from 52 observations, it is unsurprising that some estimates are statistically insignificant.

Figure C.3: Heterogeneous Effect of Immigrants on Drug Trafficking by Country and Province

Notes: These figures shows funnel plots of the estimated coefficients and inverse standard errors from 2SLS regressions of drug trafficking dummies (imports in top charts; exports in bottom charts) on Log migrants 2011, controlling for log distance between the immigrants’ origin country and Spanish province, and estimated separately for each individual Spanish province and origin country. Circle sizes represent the province population (left-hand charts) or the number of immigrants in Spain from the origin country (right-hand charts). Labeled countries/provinces are the top 5 largest by population in Spain. The x-axis is the coefficient estimate, and the y-axis is the inverse of the standard error of that estimate. The curve plots $y = \pm 1.65/x$; hence, circles above this curve are statistically significant at the 10% level. I separately drop countries or provinces for which I observe no import or export confiscations. For readability, I drop China in the top right chart and Ukraine in the bottom right chart, which are both major outliers, though both coefficients are statistically indistinguishable from zero.

Finally, I estimate the immigrant-confiscations relationship separately by the two major drugs trafficked in Spain: cannabis and cocaine, as shown in Figure C.4. I estimate a positive effect of immigrants on both the import and export of both drugs. Cocaine imports are raised by immigrants moreso than cannabis imports, consistent with the fact that cocaine must be imported, whereas cannabis may be produced locally in Spain.
Figure C.4: Effect of Immigrants on Drug Trafficking by Drug

Notes: The figure shows IV estimates of the effect of immigrants on drug trafficking ($\beta$ from equation 1) for the two major drugs trafficked in Spain: cocaine and cannabis (see Figure D.1).

C.6 Panel Estimation

I interpret my baseline cross-sectional estimates as representing the long-run effect of immigrants on drug trafficking. However, I can also estimate a panel specification to take advantage of year-to-year variation in immigration and drug trafficking. A drawback of this approach is that both immigrant population and drug trafficking may be less well measured from year to year. I must measure the bilateral immigrant population using local population registries instead of the population census. Because population registry entries may be updated with some lag and may capture some nationalities poorly (González-Enríquez, 2009), mismeasurement of the local immigrant population is a greater concern. Drug confiscations may vary wildly from year to year, as police come across a huge, multi-million dollar seizure in one year but not the next. Such variation may not reflect actual changes in drug smuggling routes. Therefore, I prefer the cross-section as my baseline with immigrant populations measured using the decennial census and drug confiscations pooled across several years.

I estimate the panel with the same specification as in the cross-sectional baseline, but adding time-superscripts:

$$Y_{o,d}^t = \alpha_o^t + \alpha_d^t + \gamma M_{o,d}^t + \zeta \ln(Dist_{o,d}) + \varepsilon_{o,d}^t$$  (C.4)

where $Y_{o,d}^t$ is a dummy for whether any illegal drugs were confiscated by Spanish authorities, either imports or exports. $M_{o,d}^t$ is defined as before and measured using annual tabulations taken from Spain’s local population registries at the country-province-year level. The $\alpha_o^t$ and $\alpha_d^t$ fixed effects absorb time-varying factors at the country or province level which drive
immigration and drug trafficking.\footnote{These fixed effects also nonparametrically absorb province- or country-specific time-trends.}

I also estimate the panel including country-province fixed effects:

\[ Y_{o,d}^t = \tilde{\alpha}_o^t + \tilde{\alpha}_d^t + \tilde{\gamma} M_{o,d}^t + \alpha_{o,d}^t + \tilde{\varepsilon}_{o,d}^t \tag{C.5} \]

These fixed effects absorb time-invariant bilateral characteristics, such as climatic or geographic similarity. However, the bilateral fixed effects \( \alpha_{o,d} \) also absorb average bilateral immigrant population size, and thus change the interpretation of the coefficient on \( M_{o,d}^t \). In particular, \( \tilde{\gamma} \) represents the change in illegal drug trafficking resulting from year-to-year net changes in the immigrant population. Therefore, equation C.5 sheds light on the effect of recent immigrants on illegal trafficking, but it does not test whether migrant networks shape illegal trafficking, the central question of this paper.

To achieve causal identification, I use the instrumental variable defined in equation 2 for the decade 1991–2001 when estimating equation C.4:

\[ IV_{o,d}^{1991–2001} = I_{1991–2001}^o - a(d) \times I_{1991–2001}^{c(o),d} \tag{C.6} \]

In addition, I include a time-varying instrument that predicts bilateral immigrant inflows between 2001 and year \( t \) when estimating both equations C.4 and C.5,

\[ IV_{o,d}^t = I_{2001–t}^{o} - a(d) \times I_{2001–t}^{c(o),d} \tag{C.7} \]

I compute immigrant inflows between 2001 and \( t \) as the net change in the bilateral immigrant population as measured in the population registry. Consistent with my baseline specification, I include interaction and squared terms when estimating the first-stage. I estimate equations C.4 and C.5 for the years 2006 through 2016.\footnote{I start the time series in 2006 because of unexplained gaps in the drug confiscations data in earlier years, suggesting that reporting of drug confiscations was not consistent in this earlier period.}

As shown in Table C.6, I find that immigrants raise imports and exports, consistent with my baseline results. For imports, a 10\% increase in the population of immigrants from country \( o \) raises the likelihood of import confiscations by 1 percentage point using the coefficient shown in column 1.\footnote{Using \( \hat{\gamma} = 0.192 \) from column 1 in Table C.6 and the average country-province-pair immigrant population of 1229, I compute: \[ I \left[ C_{o,d}^{2011–2016} > 0 \mid M_{o,d}^{2011} = 1229 \right] = 0.192 \left( \ln \left( 1 + \frac{1229 \times 1.1}{1000} \right) - \ln \left( 1 + \frac{1229}{1000} \right) \right) \approx 0.0103. \]}

When including the \( \{o, d\} \) fixed effect, I find that a 10\% increase in recent net migration from country \( o \) raises the likelihood of drug imports from \( o \) by 2 percentage points.\footnote{As noted above, controlling for \( \alpha_{o,d} \) changes the interpretation of \( \beta \) from the effect of changes in bilateral} For exports, a 10\% increase in immigrants from country \( o \) raises
the likelihood of illegal drug exports to 0 by 0.2 percentage points. When controlling for the bilateral fixed effect, the effect of net immigration on exports of illegal drugs is statistically indistinguishable from 0, suggesting that recent immigrants do not facilitate the export of illegal drugs.

Table C.6: Effect of Immigrants on Drug Trafficking: Panel Analysis

<table>
<thead>
<tr>
<th>Drug Confiscations Dummy</th>
<th>(1) (\text{Imports} )</th>
<th>(2) (\text{Imports} )</th>
<th>(3) (\text{Exports} )</th>
<th>(4) (\text{Exports} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log immigrant population</td>
<td>0.192 ( (0.0138) )</td>
<td>0.375 ( (0.173) )</td>
<td>0.0326 ( (0.00782) )</td>
<td>-0.0755 ( (0.146) )</td>
</tr>
<tr>
<td>Observations</td>
<td>58916</td>
<td>58916</td>
<td>58916</td>
<td>58916</td>
</tr>
<tr>
<td>Log distance</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Country-Year FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Province-Year FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Origin-Province FE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>1st-stage F-statistic</td>
<td>525.2</td>
<td>34.7</td>
<td>525.2</td>
<td>34.7</td>
</tr>
</tbody>
</table>

Notes: The table presents estimates of equation C.4 in columns 1 and 3 and equation C.5 in columns 2 and 4 at the country-province-year level. I instrument for the immigrant population using predicted flows defined in equations C.6 (for columns 1 and 3 only) and C.7 as well as their second-order interactions and squared terms. Standard errors are clustered by country-year in parentheses.

C.7 Enforcement Intensity

As with many studies of illegal behavior, I only observe drugs which are confiscated by police. The resulting dataset of drug confiscations is therefore a result of willful actions taken by criminals to hide their actions and of police to uncover those actions (Pinotti, 2020). In my baseline gravity estimation, I use a set of country and province fixed effects to control for policing enforcement intensity specific to each Spanish province (and common across all origins) as well as for enforcement intensity specific to each origin country (but common to all Spanish provinces). Moreover, in Section 2.3 I showed that drug confiscations correspond to drug use and availability at the province level, suggesting that confiscations correspond to actual illegal drug imports.

In this section, I conduct an additional exercise at the country-province-pair level to assess the extent to which variation in bilateral enforcement intensity drives my baseline results from Section 3.5. This exercise addresses the concern that variation in policing enforcement intensity might respond to variation in the size of the bilateral immigrant population. If, as the bilateral immigrant population rises, police enforcement of anti-drug trafficking laws
against that immigrant population rises in tandem, then import confiscations may increase as a result of greater law enforcement scrutiny rather than because immigrants are trafficking more drugs. For example, a larger Moroccan immigrant population in Barcelona might make it easier for police to find informants in the Moroccan immigrant population, even if that larger population induces no increase in illegal drug imports from Morocco.

To test for the extent to which such bilateral enforcement intensity affects my baseline estimates, I start from the intuition that for country-province pairs near the extensive margin of trafficking drugs, enforcement changes caused by variation in the number of immigrants will not substantially affect confiscations. To formalize the intuition, note that confiscations are a product of enforcement intensity and actual drug flows:

\[ C_{o,d} = E_{o,d}D_{o,d} \]  

where \( C_{o,d} \) is the number of drug shipments confiscated between \( o \) and \( d \), \( E_{o,d} \) is the fraction of drug shipments confiscated, and \( D_{o,d} \) is the actual number of drug shipments from \( o \) to \( d \). Taking the derivative of equation C.8 with respect to the number of immigrants, I obtain

\[ \frac{dC_{o,d}}{dM_{o,d}} = E_{o,d} \frac{\partial D_{o,d}}{\partial M_{o,d}} + D_{o,d} \frac{\partial E_{o,d}}{\partial M_{o,d}} \]  

(C.9)

Conditional on the set of fixed effects (\( \alpha_o, \alpha_d \)) in my baseline gravity estimation of equation 1, I have thus far implicitly assumed that \( \frac{\partial E_{o,d}}{\partial M_{o,d}} = 0 \). This assumption allowed me to estimate the object of interest, \( \frac{\partial D_{o,d}}{\partial M_{o,d}} \). Alternatively, I could fix \( D_{o,d} \) to be near zero and instead relax this assumption from \( \frac{\partial E_{o,d}}{\partial M_{o,d}} = 0 \) to \( \frac{\partial E_{o,d}}{\partial M_{o,d}} < \infty \). The challenge is subsetting my sample to the country-province pairs in which actual drugs trafficked \( D_{o,d} \)—which I do not observe—are near zero, and therefore on the extensive margin.

I construct a prediction of actual bilateral flows \( D_{o,d} \) based upon a leave-out measure of confiscations. The intuition of the predictor works as follows: suppose Barcelonan police more intensively enforce anti-drug trafficking laws against Moroccan immigrants (relative to other provinces or other nationalities) due to their large local group size. Then data on confiscations in Barcelona will include a disproportionate sample of drugs coming from Morocco (relative to the actual share of true drug flows). To strip out this discrimination from the bilateral confiscations data, I look at how (i) Barcelona confiscates drugs coming from outside Africa, and (ii) how other provinces outside Catalonia confiscate drugs coming from Morocco.

Specifically, to predict when actual flows \( D_{o,d} \approx 0 \), I use a similar leave-out push-pull

\[ ^{44} \text{Akee et al. (2014) similarly focus on the extensive margin when estimating the determinants of transnational human trafficking.} \]
structure for confiscations between 2011 and 2016 as I did for immigrant inflows in equation 2:

\[ \hat{D}_{o,d} = C_{o,-a(d)} \times \frac{C_{-c(o),d}}{C_{-c(o)}} \]  

(C.10)

where \( C \) denotes the number of confiscation events. \( \hat{D}_{o,d} \) interacts the number of drug confiscations originating from \( o \) but confiscated outside the autonomous community of \( d \) with the fraction of all drug confiscations from outside \( o \)’s continent confiscated in \( d \). Implicit in this formulation is the assumption that (i) on average, law enforcement in province \( d \) will discriminate differently against immigrants from continents outside of \( c(o) \), and (ii) on average, law enforcement in other autonomous communities will discriminate differently against immigrants from \( o \).

To gauge the extent to which enforcement intensity variation may affect my results, I re-estimate equation 1 for the subset of observations for which I predict that \( D_{o,d} \) is near 0. I show results in Table C.7 subsetting to bilateral links that I predict having at most 1 confiscation event. While the point estimates fall when subsetting to the sample predicted to be on the extensive margin, the extensive margin estimate in column 2 remains statistically significantly positive, suggesting enforcement variation cannot fully explain my bilateral results. For the results on exports shown in columns 3 and 4, I find a modest decline in the coefficient, with a loss of statistical significance in column 4.

Table C.7: Effect of Immigrants on Drug Confiscations: Extensive Margin

<table>
<thead>
<tr>
<th></th>
<th>Imports Confiscations (Dummy)</th>
<th>Exports Confiscations (Dummy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Log immigrants 2011</td>
<td>0.176</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>(0.0448)</td>
<td>(0.0419)</td>
</tr>
<tr>
<td>Observations</td>
<td>5564</td>
<td>5164</td>
</tr>
<tr>
<td>( R^2 )</td>
<td>0.052</td>
<td>0.040</td>
</tr>
<tr>
<td>Country FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Province FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Ln dist</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1st-stage F-statistic</td>
<td>152.4</td>
<td>353.1</td>
</tr>
<tr>
<td>Sample</td>
<td>All ( \leq 1 ) predicted confiscations</td>
<td>All ( \leq 1 ) predicted confiscations</td>
</tr>
</tbody>
</table>

Notes: The table presents coefficient estimates from IV regressions of equation 1 at the country-province level. I instrument for Log immigrants 2011 with \{IV_{o,d} = I_{o,-a(d)} \times I_{c(o),d}/I_{c(o)}\}_{1991-2001,2001-2011}, their interaction across decades, and squared terms. In column 2, I subset the sample to the set of country-province pairs for which the number of predicted confiscations (defined in equation C.10) is less than or equal to 1; I do the same for predicted export confiscations in column 4. Standard errors are clustered by country.
C.8 General Equilibrium Responses

While I have shown that immigrants increase drug trafficking with their home country, this effect may be offset by general equilibrium adjustments to immigrant-induced trafficking. For example, trafficker immigrants from one country may reduce their trafficking in response to more immigration (and more trafficking) from another country. If such adjustments offset the effect of immigrants on trafficking, then there should be no effect when aggregating across origin countries. To assess the strength of the general equilibrium response, I conduct two exercises.

First, in Figure C.5, I plot the evolution of drug import confiscations over time between low and high immigration Spanish provinces. If general equilibrium reallocation were dominant, one would expect that low immigrant population provinces to experience a decline in drug imports to offset an increase in high immigrant population provinces. In contrast, the plot demonstrates that provinces with a below-median immigrant population in 2000 experienced no significant change in drug confiscations, while high immigrant population provinces experienced significant increases in total confiscations. While a lack of controls and exogenous variation means alternative stories can explain the patterns displayed in the chart, the results are nonetheless suggestive that general equilibrium reallocation effects may not override the well-identified causal effects estimated in Section 3 using the gravity equation.

Figure C.5: Drug Confiscations and Local Immigrant Population

Notes: The figure plots the evolution over time of the value of confiscated illegal drug imports, separately for the 26 Spanish provinces with an above median immigrant population as of 2000 (blue solid line) and the equal number of Spanish provinces with a below median immigrant population in 2000 (red dash-dot line).
As a second exercise, I regress the immigrant population share on drug market activity at the province level. I start by estimating the effect of immigrants on confiscations of illegal drugs, illegal drug use, and drug trafficking arrests with a panel of Spanish provinces. In particular, I estimate

$$\frac{Y_t^d}{Pop_d^t} = \alpha_d + \alpha^t + \beta \frac{Migr_t^d}{Pop_d^t} + \epsilon^t_d$$  \hspace{1cm} (C.11)$$

for some measure $\frac{Y_t^d}{Pop_d^t}$ of per capita illegal drug activity and the fraction of immigrants in the population $\frac{Migr_t^d}{Pop_d^t}$ for province $d$ in year $t$. I also control for province and year fixed effects.

There may still be factors affecting both immigration and drug smuggling into a province net of these fixed effects. For example, if immigrants are attracted to regions with rising incomes, and drug traffickers also establish connections to regions with rising incomes (and therefore an expanding market for drugs), then a spurious correlation between immigration and drug trafficking may arise. Therefore, I instrument for the immigrant population using a version of the popular ethnic enclave instrument developed by Card (2001). Specifically, I instrument for the immigrant population share with

$$IV_t^d = \frac{1}{Pop_d^t} \sum_o \frac{Migr_{1981}^{d,o}}{Migr_{1981}^{d}} Migr_t^o$$  \hspace{1cm} (C.12)$$

where $Migr_t^o$ refers to the number of immigrants from $o$ living in Spain in year $t$. $\widehat{Pop}_d^t$ is the predicted population of province $d$ in year $t$. I predict the population, following Mayda et al. (2022). First I predict immigrant inflows by summing over origin countries the interaction between the initial immigrant population share and the national change in immigrants from that origin 45: $\Delta \hat{X}_d^t = \sum_o \frac{X_{1981}^{o,d}}{X_{1981}^{o}} (X_t^o - X_{t-1}^o)$ for $X$ referring to either native-born or immigrants and for each year of data available. Next, I add these predicted immigrant flows and native population changes to the observed 1981 migrant or native populations, respectively. Summing the predicted migrant and native populations together yields $\widehat{Pop}_d^t$ for each province and year. I use data from the years 2006 to 2016. 46

I show the results of estimating equation C.11 in Table C.8 for a variety of indicators of the local illegal drug market. I show the first-stage regression results in column 1. The ethnic enclave instrument defined in equation C.12 positively and statistically significantly

---

45 Following Card (2001) and Mayda et al. (2022), I collapse origin countries into 16 groups. These groups are the top 8 immigrant sending countries (Italy, Venezuela, Argentina, United Kingdom, Portugal, France, Morocco, and Cuba), and the remaining countries in Western Europe, Eastern Europe, South American, Central American and the Caribbean, the U.S. and Canada, Africa, Asia, and Australia and Oceania.

46 I start the time series in 2006 in part because the data on drug use does not start until 2005. Moreover, there are several months of zero reported confiscations prior to 2006, suggesting that reporting of drug confiscations was not consistent in this earlier period.
predicts the local share of immigrants. I next estimate the effect of immigrant population share on the per capita value of drugs confiscated in province $d$ in year $t$ for imports (column 2) and exports (column 3). Column 2 of Table C.8 shows the result for imports, and column 3 for exports. I find that an increase in the local migrant population share of 10 percentage points raises per capita confiscations of illegal drug imports by $83$ (SE=$45$) and of exports by $11$ (SE=$33$). These results suggest that more immigrants in a region raise total drug imports into that region relative to other regions.
Table C.8: Effect of Immigrants on Illegal Drug Activity (Province-level)

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Stage:</td>
<td>2SLS:</td>
<td>2SLS:</td>
<td>2SLS:</td>
<td>2SLS:</td>
<td>2SLS:</td>
<td>2SLS:</td>
</tr>
<tr>
<td>Share immigrants</td>
<td>value imports</td>
<td>value exports</td>
<td>shr. native-born used drugs last 12 mo.</td>
<td>shr. native-born ever used drugs</td>
<td>native-born drug trafficking arrests per-capita</td>
<td>cannabis plant confiscations per-capita</td>
</tr>
<tr>
<td>8.546</td>
<td>(2.601)</td>
<td>Migr. pop. share</td>
<td>838.1</td>
<td>111.9</td>
<td>-0.0391</td>
<td>0.831</td>
</tr>
<tr>
<td>(453.7)</td>
<td>(335.7)</td>
<td>(0.343)</td>
<td>(1.092)</td>
<td>(0.00129)</td>
<td>(0.0253)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>572</td>
<td>572</td>
<td>572</td>
<td>260</td>
<td>260</td>
<td>364</td>
</tr>
<tr>
<td>First-stg. F-stat.</td>
<td>10.8</td>
<td>10.8</td>
<td>10.8</td>
<td>6.7</td>
<td>6.7</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Notes: The table presents coefficient estimates from IV regressions of equation C.11 at the province-year level. I instrument for Migr. pop. share using the excluded instrument defined in equation C.12, with the first-stage shown in column 1. The dependent variable in column 2 is the value of illegal drug imports and in column 3 exports confiscated per capita. The dependent variable of columns 4 and 5 is the share of native-born Spaniards reporting to the EDADES survey that they used drugs in the last 12 months (column 4) or ever (column 5). The dependent variable of column 6 is the number of Spanish citizens arrested for illegal drug trafficking per capita. Column 7 shows results using the number of cannabis plants seized per capita as the dependent variable, which is only available for a single cross-section. Per capita values are relative to the 1981 province population. Standard errors are clustered at the autonomous community-by-year level.
As an alternative measure of local drug supply, I next turn to local illegal drug consumption. I estimate equation C.11 with dependent variable of the share of the native-born using illegal drugs, measured using the biennial EDADES survey described in Section 2.3. I find no statistically significant effect of immigrants on the drug use of the native-born as shown in columns 4 and 5 of Table C.8, though due to the biennial nature of the survey, the sample size and therefore estimation precision fall significantly.

To get a sense for whether immigrant labor is substituting for the native-born in high-immigration provinces, I examine how per capita native-born drug trafficking arrests change with immigration in column 6. Using a panel of arrests data between 2010 and 2016, I find that increased immigration drives down arrests of native-born Spaniards for drug trafficking, although the coefficient magnitude is small. This result suggests that immigrants may, to a modest extent, push the native-born out of the drug trafficking business.

I finally look at how immigration affects the per capita cultivation of cannabis plants within Spain. As immigration reduces trade costs, one may expect trade to displace local production. Alternatively, an increased labor supply (in the form of immigration) may reduce the costs of production, thereby increasing local cannabis production. I find no statistically significant effect of immigrants on cannabis plant confiscations using a cross-section of plant confiscations data.

---

47 Spain produces a small but non-trivial amount of cannabis. Alvarez et al. (2016) find that in 2013, authorities confiscated almost 200,000 cannabis plants growing in Spain. Combining the United Nations' estimate of the average weight of a cannabis plant (p. 39, UNODC, 2017) with the estimate of wholesale prices of cannabis herb in Spain for 2013, the confiscated plants are valued at approximately $26 million. This compares to about $312 million in confiscated cannabis coming from outside Spain in 2013.

48 I draw on Alvarez et al. (2016), who assemble a dataset on cannabis plant confiscations based on 2013 press reports and public statements by the Spanish government. I do not have access to the microdata compiled by Alvarez et al. (2016), but instead use the approximate number of plants confiscated by province derived from their Figure 4. This leads to some measurement error. Moreover, I do not observe confiscations in the provinces of Ceuta or Mellila.
## D Additional Tables and Figures

Table D.1: Effect of Immigrants on Drug Trafficking (OLS, Adding Fixed Effects)

<table>
<thead>
<tr>
<th>Outcome: Confiscated Imports Dummy</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log immigrants 2011</td>
<td>0.215***</td>
<td>0.176***</td>
<td>0.208***</td>
<td>0.140***</td>
</tr>
<tr>
<td>(0.0392)</td>
<td>(0.0208)</td>
<td>(0.0466)</td>
<td>(0.0221)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>5564</td>
<td>5564</td>
<td>5564</td>
<td>5564</td>
</tr>
<tr>
<td>Outcome: Confiscated Exports Dummy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log immigrants 2011</td>
<td>0.0938***</td>
<td>0.117***</td>
<td>0.0675**</td>
<td>0.0691**</td>
</tr>
<tr>
<td>(0.0212)</td>
<td>(0.0189)</td>
<td>(0.0219)</td>
<td>(0.0215)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>5564</td>
<td>5564</td>
<td>5564</td>
<td>5564</td>
</tr>
<tr>
<td>Country FE</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Province FE</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log dist</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Notes: The table presents OLS estimates of equation 1 at the country-province level. Standard errors are clustered by country.

Figure D.1: Confiscations by Drug Type

Notes: This figure shows the makeup of drug confiscations in Spain by drug type. Drug prices used are 2012 wholesale prices taken from a survey of Spanish drug prices reported to the United Nations Office of Drugs and Crime (UNODC).
Figure D.2: Immigrant Population Share in Spain, 1990–2015

Notes: This figure shows the fraction of the Spanish population born in another country over time. The data are reported by the World Bank but originally come from the United Nations Population Division.

Figure D.3: Drug Confiscations by Mode of Transport

Notes: The figure shows the shares of mode of transportation of confiscated drugs. On the left I plot fraction of confiscation events, on the right, I plot the share of dollar values confiscated. Data come from the United Nations Office of Drugs and Crime.
**Figure D.4: Distribution of Log Value of Confiscations**

*Notes:* This figure shows the distribution of the log value of drug confiscations in Spain between 2011 and 2016 as reported to the United Nations Office of Drugs and Crime (UNODC). Drug prices used are 2012 wholesale prices taken from a survey of Spanish drug prices reported to the UNODC.

**Figure D.5: Top Five Origins by Drug**

*Notes:* This figure shows the top five countries of origin of illegal drugs confiscated in Spain between 2011 and 2016 by drug. Data come from the United Nations Office of Drugs and Crime.
Figure D.6: Top 5 Intended Destinations by Drug

Notes: This figure shows the top five countries of intended destination of illegal drugs confiscated in Spain between 2011 and 2016. Data come from the United Nations Office of Drugs and Crime.

Figure D.7: Geography of Drug Import and Export Confiscations in Spain

Notes: This figure shows quartiles for the distribution of drug confiscations of imports (measured in dollars by the estimated wholesale value of confiscated drugs) per capita on the left and exports per capita on the right, across Spanish provinces for confiscations occurring between 2011 and 2016 as reported by Spain to the United Nations Office of Drugs and Crime. Darker shades indicate higher quartiles.
Figure D.8: Correlation of Drug Confiscations to Personal Use by Drug

Notes: This figure shows the correlation coefficient between the amount confiscated per capita for each drug with the fraction of respondents in a province who report having ever used the drug or having used the drug within the last 12 months. Correlations are estimated on a cross-section of 52 Spanish provinces, averaged across 2011 to 2016 for drug confiscations and across the 2011, 2013, and 2015 waves of the EDADES (Survey on Alcohol and Drugs in Spain).

Figure D.9: Drug Confiscations and Number of Immigrants Unconditional Correlation

Notes: The figure on the left shows the scatter plot of the bilateral log value of confiscated drug imports on the x-axis with the bilateral log number of immigrants measured in 2011 on the y-axis. The figure on the right is the same but plots the log of the value of drugs confiscated intended for export on the x-axis.
Appendix References


